生态系统

内蒙古羊草草原呼吸的影响因素分析和区分

展开
  • 1. 中国科学院地理科学与资源研究所, 北京100101;
    2. 中国科学院研究生院, 北京100049
耿元波(1969-), 男, 副研究员, 研究方向为环境生物地球化学. E-mail: gyb0741@sina.com

收稿日期: 2010-04-09

  修回日期: 2010-06-08

  网络出版日期: 2010-09-20

基金资助

中国科学院地理科学与资源研究所自主创新项目(200905009); “ 十一五” 国家科技支撑计划(2006BAJ10B04)

Analysis of Affecting Factors and Partitioning of Respiration in a Leymus chinensis Steppe in Inner Mongolia

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2010-04-09

  Revised date: 2010-06-08

  Online published: 2010-09-20

Supported by

Foundation: Independent Innovation Project of Institute of Geographic Sciences and Natural Resources Research, CAS, No.200905009; National Key Technology R & D Program during the 11th Five-year Plan of China, No.2006BAJ10B04

摘要

利用静态暗箱-气相色谱法在植物生长旺季测算了内蒙古锡林河流域羊草草原的土壤微生物呼吸、土壤呼吸和生态系统呼吸。地温和水分是植物生长旺季呼吸最重要的影响因素。地温在水分条件适宜的情况下可以解释CO2通量的部分变化(R2 = 0.376~0.655)。土壤水分含量也可以解释土壤呼吸和生态系统呼吸的部分变化(R2 = 0.314~0.583),但基本不能解释土壤微生物呼吸的变化(R2 = 0.063)。即使在较高温度下,较低的土壤水分含量(≤ 5%) 也会显著的抑制CO2排放。长期干旱后降雨使CO2通量在高温下迅速增大。基于5 cm地温和0~10 cm土壤水分含量的双变量模型可以解释CO2通量约70%的变化。观测期间,土壤呼吸占生态系统呼吸的比例介于47.3%~72.4%之间,平均为59.4%;根呼吸占土壤呼吸的比例介于11.7%~51.7%之间,平均为20.5%。由于植物体去除引起的土壤水分含量上升可能使我们对土壤呼吸占生态系统呼吸比例的估计略微偏高,根呼吸占土壤呼吸的比例略微偏低。

本文引用格式

耿元波, 罗光强 . 内蒙古羊草草原呼吸的影响因素分析和区分[J]. 地理学报, 2010 , 65(9) : 1058 -1068 . DOI: 10.11821/xb201009003

Abstract

Using a static opaque chamber method, the rates of soil microbial respiration, soil respiration, and ecosystem respiration were measured through continuous in-situ experiments in semiarid Leymus chinensis steppe in Xilin River Basin of Inner Mongolia, China. Soil temperature and moisture are the most important factors affecting CO2 flux. Soil temperature was the main factor influencing respiration rates. Exponential models based on soil temperature can explain large percent of CO2 efflux variations (R2 = 0.375-0.655) excluding data of low soil water conditions. Soil moisture can also effectively explain some variations of soil and ecosystem respiration (R2 = 0.314-0.583), but it can not explain much of variation of soil microbial respiration (R2 = 0.063). Low soil water content (≤5%) inhibited CO2 efflux though soil temperature was high. Rewetting the soil after a long drought resulted in substantial increases in CO2 flux at high temperature. Bi-variable models based on soil temperature at 5 cm depth and soil water content at 0-10 cm depth can explain about 70% of variations of CO2 effluxes. The contribution of soil respiration to ecosystem respiration averaged 59.4%, ranging from 47.3% to 72.4%; the contribution of root respiration to soil respiration averaged 20.5% , ranging from 11.7% to 51.7% . The contribution of soil to ecosystem respiration was a little overestimated and root to soil respiration underestimated because of increased soil water content that occurred as a result of plant removal.

参考文献


[1] Davidson E, Richardson A, Savage K et al. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biology, 2006, 12(2): 230-239.

[2] Valentini R, Matteucci G, Dolman A et al. Respiration as the main determinant of carbon balance in European forests. Biogeochemistry, 1997, 38: 1-17.

[3] Giardina C, Ryan M. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 2000, 404(6780): 858-861.

[4] Franzluebbers K, Franzluebbers A J, Jawson M D. Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie. Soil Science Society of America Journal, 2002, 66(1): 254-262.

[5] Bouwman A F, Germon J C. Soils and climate change: Introduction. Biology and Fertility of Soils, 1998(Special Issue), 27(3): 219-219.

[6] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48(1): 7-20.

[7] Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1(1): 77-91.

[8] Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 2006, 38(3):425-448.

[9] Zheng X H, Zhou Z X, Wang Y S et al. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology, 2006, 12(9): 1717-1732.

[10] Hanson P J, Edwards N T, Garten C T et al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 2000, 48(1): 115-146.

[11] Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 2000, 32(11/12): 1625-1635.

[12] Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 2000, 48(1): 71-90.

[13] Wang W, Guo J, Feng J et al. Contribution of root respiration to total soil respiration in a Leymus chinensis (Trin.) Tzvel. grassland of northeast China. Journal of Integrative Plant Biology, 2006, 48(4): 409-414.

[14] Bahn M, Knapp M, Garajova Z et al. Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 2006, 12(6): 995-1006.

[15] Adams J M, Faure H, Fauredenard L et al. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 1990, 348(6303): 711-714.

[16] Smith S, Huxman T, Zitzer S et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 2000, 408(6808): 79-82.

[17] Wu Zhengyi. Vegetation of China. Beijing: Science Press, 1980: 519-521.

[吴征镒. 中国植被. 北京: 科学出版社, 1980: 519-521.]

[18] Li Bo, Yong Shipeng, Li Zhonghou. The vegetation of the Xilin River Basin and its utilization//Inner Mongolia Grassland Ecosystem Research Station. Research on Grassland Ecosystem (Vol. 3). Beijing: Science Press, 1988: 84-183.

[李博, 雍世鹏, 李忠厚. 锡林河流域植被及其利用//中国科学院内蒙古草原生态定位站. 草原生态系统研究 (第三集). 北京: 科学出版社, 1988: 84-183.]

[19] Wang Wei, Guo Jixun. Contribution of CO2 emission from soil respiration and from litter decomposition in Lymus chinensis community in Northeast Songnen grassland. Acta Ecologica Sinica, 2002, 22(5): 655-660.

[王娓, 郭继勋. 东 北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量. 生态学报, 2002, 22(5): 655-660.]

[20] Fu Yuling, Yu Guirui, Wang Yanfen et al. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Science in China: Series D, 2006, 36(A01): 183-193.

[伏玉玲, 于贵瑞, 王 艳芬等. 水分胁迫对内蒙古羊草草原生态系统光合和呼吸作用的影响. 中国科学: D 辑, 2006, 36(A01): 183-193.]

[21] Jia Bingrui, Zhou Guangsheng, Wang Fengyu et al. Soil respiration and its influencing factors at grazing and fenced typical Leymus chinensis steppe, Nei Monggol. Environmental Science, 2005, 26(6): 1-7.

[贾丙瑞, 周广胜, 王风玉等.放牧与围栏羊草草原土壤呼吸作用及其影响因子. 环境科学, 2005, 26(6): 1-7.]

[22] Bai Yongfei, Chen Zuozhong. Effects of long-term variability of plant species and functional groups on stability of a Leymus chinensis community in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica, 2000, 24(6): 641-647.

[白永飞, 陈佐忠. 锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响. 植物生 态学报, 2000, 24(6): 641-647.]

[23] Bai Y F, Han X G, Wu J G et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181-184.

[24] Bai Yongfei, Li Linghao, Wang Qibing et al. Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica, 2000, 24(6): 667-673.

[白永飞, 李凌浩, 王其兵等. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究. 植物生态学报, 2000, 24(6): 667-673.]

[25] Wang Y S, Wang Y H. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Advances in Atmospheric Sciences, 2003, 20(5): 842-844.

[26] Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 2001, 33 (2): 155-165.

[27] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995, 9 (1): 23-36.

[28] Peterson K, Billings W. Carbon dioxide flux from tundra soils and vegetation as related to temperature at Barrow, Alaska. American Midland Naturalist, 1975, 94(1): 88-98.

[29] Kang S, Doh S, Lee D et al. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 2003, 9(10): 1427-1437.

[30] Orchard V, Cook F. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 1983, 15 (4): 447-453.

[31] Tufekcioglu A, Raich J W, Isenhart T M et al. Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil, 2001, 229(1): 117-124.

[32] Tang J W, Misson L, Gershenson A et al. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural and Forest Meteorology, 2005, 132(3/4): 212-227.

[33] Xu M, Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 2001, 7(6): 667-677.

[34] Mielnick P C, Dugas W A. Soil CO2 flux in a tallgrass prairie. Soil Biology and Biochemistry, 2000, 32(2): 221-228.

[35] Hanson P J, Wullschleger S D, Bohlman S A et al. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiology, 1993, 13(1): 1-15.

[36] Davidson E A, Verchot L V, Cattanio J H et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 2000, 48(1): 53-69.

[37] Martin J G, Bolstad P V. Annual soil respiration in broadleaf forests of northern Wisconsin: influence of moisture and site biological, chemical, and physical characteristics. Biogeochemistry, 2005, 73(1): 149-182.

[38] Savage K E, Davidson E A. Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 2001, 15(2): 337-350.

[39] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998, 4(2): 217-227.

[40] Xu L K, Baldocchi D D, Tang J W. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 2004, 18(4).doi:10.1029/2004GB002281

[41] Jassal R, Black A, Novak M et al. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 2005, 130(3/4): 176-192.

[42] Tang J W, Misson L, Gershenson A et al. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural and Forest Meteorology, 2005, 132(3/4): 212-227.

[43] Li Shaoliang. Preliminary studies on moisture regime and its relationship with plant biomass in grassland//Inner Mongolia Grassland Ecosystem Research Station. Research on grassland ecosystem (the first volume). Beijing: Science Press, 1985: 195-202.

[李绍良. 草原土壤水分状况与植物生物量关系的初步研究//内蒙古草原生态系统定位 研究站. 草地生态系统研究(第一集). 北京: 科学出版社, 1985: 195-202.]

[44] Halverson L J, Jones T M, Firestone M K. Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Science Society of America Journal, 2000, 64(5): 1630-1637.

[45] Huxman T E, Snyder K A, Tissue D et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 2004, 141(2): 254-268.

[46] Fierer N, Schimel J P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34(6): 777-787.

[47] Saetre P, Stark J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia, 2005, 142(2): 247-260.

[48] Daniel R M, Dunn R V, Finney J L et al. The role of dynamics in enzyme activity. Annual Review of Biophysics and Biomolecular Structure, 2003, 32: 69-92.

[49] Eppler R K, Komor R S, Huynh J et al. Water dynamics and salt-activation of enzymes in organic media: Mechanistic implications revealed by NMR spectroscopy//Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5706-5710.

[50] Jenerette G D, Scott R L, Huxman T E. Whole ecosystem metabolic pulses following precipitation events. Functional Ecology, 2008, 22(5): 924-930.

[51] Casals P, Romanya J, Cortina J et al. CO2 efflux from a Mediterranean semi-arid forest soil: I. Seasonality and effects of stoniness. Biogeochemistry, 2000, 48(3): 261-281.

[52] Qi Y, Xu M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant and Soil, 2001, 237(1): 15-23.

[53] Kessavalou A, Mosier A R, Doran J W et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. Journal of Environmental Quality, 1998, 27(5): 1094-1104.

[54] Mosier A R, Delgado J A. Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere, 1997, 35(9): 2059-2082.

[55] Müller C, Sherlock R R. Nitrous oxide emissions from temperate grassland ecosystems in the Northern and Southern Hemispheres. Global Biogeochemical Cycles, 2004, 18(1), doi: 10.1029/2003GB002175.

[56] Franzluebbers K, Franzluebbers A J, Jawson M D. Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie. Soil Science Society of America Journal, 2002, 66(1): 254-262.

[57] Byrne K A, Kiely G. Partitioning of respiration in an intensively managed grassland. Plant and Soil, 2006, 282(1/2): 281-289.

[58] Wang Jun, Sha Liqing, Li Jianzhou et al. CO2 efflux in subalpine meadows under different grazing management in Shangrila, Yunnan. Acta Ecologica Sinica, 2008, 28(8): 3574-3583.

[王君, 沙丽清, 李检舟等. 云南香格里拉地区亚高 山草甸不同放牧管理方式下的碳排放. 生态学报, 2008, 28(8): 3574-3583.]

[59] Buyanovsky G, Kucera C, Wagner G. Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology, 1987: 2023-2031.

[60] Li L H, Han X G, Wang Q B et al. Separating root and soil microbial contributions to total soil respiration in a grazed grassland in the Xilin River Basin. Acta Phytoecologica Sinica, 2002, 26(1): 29-32.

[61] Yazaki Y, Mariko S, Koizumi H. Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan. Ecological Research, 2004, 19(5): 511-520.

[62] Edwards N T. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytologist, 1991, 118(2): 315-321.

文章导航

/