气候变化

基于Copula 函数的新疆极端降水概率时空变化特征

展开
  • 1. 中山大学水资源与环境系, 广州510275;
    2. 中山大学华南地区水循环与水安全广东省普通高校重点实验室, 广州510275;
    3. 新疆水利水电科学研究院, 乌鲁木齐830049
张强(1974-), 男, 山东沂水人, 博士, 教授, 博士生导师, 主要从事流域气象水文学研究、旱涝灾害机理、流域地表水文过程及其对气候变化的响应机制与机理以及流域生态需水等领域的研究工作。E-mail: zhangq68@mail.sysu.edu.cn

收稿日期: 2010-09-12

  修回日期: 2010-10-22

  网络出版日期: 2011-01-25

基金资助

新疆自治区科技攻关项目(200931105); 国家自然科学基金面上项目(41071020); 中山大学理工科青年教师重点培育计划项目(2009-37000-1132381)

Spatial Variability of Probability Distribution of Extreme Precipitation in Xinjiang

Expand
  • 1. Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong University Key Laboratory of Water Cycle and Security in South China, Sun Yat-sen University, Guangzhou 510275, China;
    3. Xinjiang Research Institute of Water Resources and Hydropower, Urumqi 830049, China

Received date: 2010-09-12

  Revised date: 2010-10-22

  Online published: 2011-01-25

Supported by

Xinjiang Technology Innovative Program, No.200931105; National Natural Science Foundation of China, No.41071020; Program for Outstanding Young Teachers of the Sun Yat-sen University, No.2009-37000-1132381

摘要

依据新疆地区53 个雨量站1957-2009 年日降水资料,根据研究需要,定义了8 个极端降水指标。运用K-S 法确定降水指标最适概率分布函数,确定十年一遇极端降水量值;在此基础上,采用Copula 非参数估计方法,通过Akaike Information Criterion (AIC) 法确定两降水指标联合分布函数,系统分析极端降水单变量极值及降水极值二维联合概率分布特征,研究新疆地区降水极值概率变化的空间演变特征。研究结果表明:(1) 北疆比南疆湿润,北疆发生极端强降水的概率大,而南疆发生极端弱降水的概率较大,另外,相比较而言,山区要比平原降水多;(2) 极端强、弱降水同年发生的概率分布特征复杂,从降水天数来看,一年内同时发生长历时强降水与弱降水事件的概率山区较平原大;从极端降水总量来看,同时发生强降水与弱降水事件的概率在平原区较山区为大;从极端降水强度来看,同时发生强度较大的强降水与弱降水事件的概率在天山南坡较其他地区为大;(3) 洪旱发生概率与地形有关,天山是洪旱发生的分界线,山区发生洪旱灾害的概率比平原小。

本文引用格式

张强, 李剑锋, 陈晓宏, 白云岗 . 基于Copula 函数的新疆极端降水概率时空变化特征[J]. 地理学报, 2011 , 66(1) : 3 -12 . DOI: 10.11821/xb201101001

Abstract

Daily precipitation of 53 rain stations in Xinjiang during 1957-2009 is analyzed and 8 extreme precipitation indices are defined in this study. We use Kolmogorov-Smimov method to confirm the most fitted probability distributions and evaluate the ten-year return periods values. Based on that, a nonparametric estimation procedure for Copula and Akaike Information Criterion (AIC) method are used to calculate joint distribution of 2 precipitation indices. Then we comprehensively analyze the spatial variability of probability distribution of one precipitation index and joint distribution of two indices after 1980. The results show that: (1) North Xinjiang is wetter than South Xinjiang. The probability of extreme heavy precipitation is great in North Xinjiang, while that of extreme slight precipitation is great in South Xinjiang. In addition, the precipitation in the Tianshan Mountains is more than that in plain areas. (2) The spatial distribution of the probability of the event that extreme heavy precipitation and extreme slight precipitation occur in the same year is very complex. In terms of the days of precipitation, the probability in Tianshan Mountains is greater than that in plain areas. In terms of the total extreme precipitation, it is greater in plain areas. In terms of the precipitation intensity, it is greater on the southern slope of Tianshan Mountains. (3) There are relations between probability distribution of drought-flood and terrain: Tianshan Mountains is the dividing line of the occurrence of drought-flood, and the plain areas are prone to drought-flood disasters than the mountain regions. This study is of significance to get a better understanding of the droughtflood and scientific water resources management in arid and semi arid areas.

参考文献

[1] Zhang Qiang, Xu Chongyu, Chen Yongqin David et al. Spatial assessment of hydrologic alteration across the Pearl RiverDelta, China, and possible underlying causes. Hydrological Processes, 2009, 23: 1565-1574.



[2] Xu Chongyu, Widden E, Halldin S. Modeling hydrological consequences of climate change-progress and challenge.Advances in Atmospheric Sciences, 2005, 22(6): 789-797.



[3] Yue S. Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls.Hydroscience Journal, 2000, 45(2): 315-326.



[4] Zhang L, Singh V P. Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 2007,332: 93-109.



[5] Buhe A, Tsuchiya K, Kaneko M et al. Land cover of oases and forest in Xinjiang, China retrieved from ASTER data.Advances in Space Research, 2007, 39(1): 39-45.



[6] Zhang Qiang, Xu Chongyu, Chen Xiaohong et al. Statistical behaviours of precipitation regimes in China and their linkswith atmospheric circulation 1960-2005. International Journal of Climatology, 2010, doi: 10.1002/joc.2193.



[7] Li X M, Jiang F Q, Li L H et al. Spatial and temporal variability of precipitation concentration index, concentration degreeand concentration period in Xinjiang, China. International Journal of Climatology, 2010, doi: 10.1002/joc.2181.



[8] Xue Yan. Change trend of the precipitation and air temperature in Xinjiang since recent 50 years. Arid Zone Research,2003, 20(2):127-130. [薛燕. 半个世纪以来新疆降水和气温的变化趋势. 干旱区研究, 2003, 20(2): 127-130.]



[9] Shi Yafeng, Zhang Xiangsong. The surface water resources influences in northwest arid area of climate changes and itstrend. Science in China, 1995, 25(9): 968-977. [施雅风, 张祥松. 气候变化对西北干旱区地表水资源的影响和未来趋势.中国科学, 1995, 25(9): 968-977.]



[10] Ren Guoyu. Spatial patterns of change trend in rainfall of China. Quarterly Journal of Applied Meteorlolgy, 2000, 11(3):322-330. [任国玉. 我国降水变化趋势的空间特征. 应用气象学报, 2000, 11(3): 322-330.]



[11] Richard J. A review of twentieth century drought indices used in the United States. American Meteorological Society,2002: 1149-1165.



[12] Fatichi S, Caporali E. A comprehensive analysis of changes in precipitation regime in Tuscany. International Journal ofClimatology, 2009, 29: 1883-1893.



[13] Frich P, Alexander L V, Della-Marta P et al. Observed coherent changes in climatic extremes during the second half of thetwentieth century. Climate Research, 2002, 19: 193-212.



[14] Ramos M C, Martinez-Casanovas J A. Trends in precipitation concentration and extremes in the MediterraneanPenedes-Anoia region, NE Spain. Climatic Change, 2006, 457-474.



[15] Wang Yuqing, Zhou Li. Observed trends in extreme precipitation events in China during 1961-2001 and the associatedchanges in large-scale circulation. Geophysical Reseach Letters, 2004, 32: L09707. doi:10.1029/2005GL022574



[16] Zhai Panmao, Zou Xukai. Changes in temperature and precipitation and their impacts on drought in China during1951-2003. Advances in Climate Change Research, 2005, 1(1): 16-18. [翟盘茂, 邹旭恺. 1951-2003 年中国气温和降水变化及其对干旱的影响. 气候变化研究进展, 2005, 1(1): 16-18.]



[17] Jiang Fengqing, Zhu Cheng, Mu Guijin et al. Recent magnification of flood and drought calamities in Xinjiang: Ananalysis of anthropogenetic effects. Acta Geographica Sinica, 2002, 57(1): 57-66. [姜逢清, 朱诚, 穆桂金. 当代新疆洪旱灾害扩大化: 人类活动的影响分析. 地理学报, 2002, 57(1): 57-66.]



[18] Stern R D. The calculation of probability distributions for models of daily precipitation. Arch. Met. Geoph. Biokl., 1980,28: 137-147.



[19] Spiegel M R, Schiller J, Srinivasan R A et al. Outlines of Theory and Problems of Probability and Statistics. 2nd ed. USA:McGraw-Hill Companies, 2000: 2-7.



[20] Wilks D S. Interannual variability and extreme-value characteristics of several stochastic daily precipitation models.Agricultural and Forest Meteorology, 1999, 93: 153-169.



[21] Hosking J R M. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. Journalof the Royal Statistical Society, 1990, 52(1): 105-124.



[22] Frank J, Masse J. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 1951,46(253): 68-78.



[23] Nelsen R B. An Introduction to Copulas. Portland: Springer Science, 2006: 7-269.



[24] Xiao Yi. Multivariate hydrological analysis and estimation methods based on Copula function [D]. Wuhan: WuhanUniversity, 2007. [肖义. 基于Copula函数的多变量水文分析计算方法及应用研究[D]. 武汉: 武汉大学, 2007.]



[25] Embrechts P. Modelling Dependence with Copulas and Applications to Risk Management. Switzerland, 2001.



[26] Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.



[27] Genest C, Rivest L P. Statistical inference procedures for bivariate Archimedean Copulas. American StatisticalAssociation, 1993, 88(423): 1034-1043.



[28] Salvadori G, Michele C. Frequency analysis via Copulas: Theoretical aspects and applications to hydrological events.Water Resource Research, 2004, doi: 10. 1029/2004WR003133.



[29] Zhang Ying. Precipitation features and water resources stability in Xinjiang. Journal of Arid Land Resources &Environment, 1992, 6(2): 80-84. [张英. 新疆降水丰、旱特点及水资源的稳定度. 干旱区资源与环境, 1992, 6(2): 80-84.]
文章导航

/