地表水

云南纵向岭谷地区气候变化对河流径流量的影响

展开
  • 1. 云南大学资源环境与地球科学学院, 昆明 650091;
    2. 云南大学亚洲国际河流中心, 昆明 650091
尤卫红 (1962-), 男, 教授, 博士生导师, 中国地理学会会员, 主要从事天气、气候和环境变化研究。E-mail:youweih@sina.com

收稿日期: 2004-02-10

  修回日期: 2004-11-24

  网络出版日期: 2005-01-25

基金资助

国家重点基础研究发展计划 (973计划) (2003CB415100); 云南省自然科学基金项目(2004D0005M;2001D0002Z); 云南大学重点科研项目(2002Z003ZH)

Climate Change of the Longitudinal Range-Gorge in Yunnan and Its Influence on the River Flow

Expand
  • 1. School of Resource Environment and Earth Science, Yunnan University, Kunming 650091, China;
    2. Asia International Rivers Center, Yunnan University, Kunming 650091, China

Received date: 2004-02-10

  Revised date: 2004-11-24

  Online published: 2005-01-25

Supported by

National Basic Research Program of China, No.2003CB415100; Natural Science Foundation of Yunnan Province, No.2004D0005M; No.2001D0002Z; Key Project for Science Research of Yunnan University, No.2002Z003ZH

摘要

以云南纵向岭谷地区历年逐月径流量观测数据和云南的逐月雨量和气温场观测数据为基础,应用统计分析和小波变换的分析方法,研究了云南纵向岭谷作用下的年际气候变化及其对国际河流年径流量变化的影响。结论为:由于云南纵向岭谷区的特殊下垫面作用,云南月降水量场变化与云南国际河流月径流量变化的高相关区中心的纬度差异不显著,但经度差异却十分显著;澜沧江气候区的年降水量明显大于其东部的李仙江和元江气候区的年降水量,其年降水量的偏差则明显小于它们;元江气候区的年平均气温明显低于其西部的李仙江和澜沧江气候区的年平均气温,其年平均气温的偏差也明显小于它们;与云南纵向岭谷作用下的年降水量变化特征相对应,元江的年径流量偏差也明显大于其西部的李仙江和澜沧江的年径流量偏差;云南纵向岭谷对西南季风的阻隔作用较大,而对东北季风的阻隔作用相对较小;云南纵向岭谷作用下的年降水量变化主要表现在较小的时间尺度上,随着时间尺度的增大其作用变小;云南纵向岭谷对于年气温变化的作用比年降水量变化的作用要小;近几年来,各气候区的年降水量变化的主要特征是偏多趋势,受其影响,云南国际河流的年径流量变化也主要表现为偏大趋势;近十几年来,各气候区的年气温变化的主要特征是显著偏高。

本文引用格式

尤卫红, 何大明, 段长春 . 云南纵向岭谷地区气候变化对河流径流量的影响[J]. 地理学报, 2005 , 60(1) : 95 -105 . DOI: 10.11821/xb200501011

Abstract

Based on the observed data of the flow in the longitudinal range-gorge region and the data of monthly precipitation and air temperature field in Yunnan, and using the statistics and wavelet transforms, the interannual climate change under the effect of the longitudinal range-gorge and its influence on the international river flows are investigated. The results show that the latitude variations of the high correlation centers between the monthly precipitation field and the international river flows are not significant due to the role of special underlying surface in the longitudinal range-gorge region, but the longitude variations are very significant. The annual precipitation of the Lancang climatic region is obviously greater than that of the eastern Lixian River and Yuan River regions, but the standard deviation of the annual precipitation is significantly smaller than them. The annual mean air temperature of the Yuan River region is lower than that of the western Lixian River and Lancang River regions, and the standard deviation of the annual air temperature is also smaller than them. Corresponding to the characteristics of the annual precipitation variations under the effect of the longitudinal range-gorge, the standard deviation of the annual flows of the Yuan River is also obviously greater than western Lixian and Lancang rivers. The barrier action of longitudinal range-gorge on southwest monsoon is greater, but on northeast monsoon is smaller. The annual precipitation variations under the effect of the longitudinal range-gorge are mainly on the smaller time scale, with the increase of time scale, the effect of the longitudinal range-gorge becomes smaller. The role of the longitudinal range-gorge in the annual air temperature variations is smaller than the annual precipitation variations. In recent years, the main characteristics of the annual precipitation variations in all the climatic regions are that precipitation tends to increase, under such an effect, the annual flow variations for the international rivers also tend to be great.

参考文献


[1] Jacobs J W. Toward sustainability in lower Mekong River basin development. Water International, 1994, 19(1): 43-51.

[2] Jacobs J W. Mekong Committee history and lessons for river basin development. The Geographical Journal, 1995, 161(2): 135-148.

[3] Sandra P. Dividing The Waters: Food Security, Ecosystem Health, and the New Politics of Scarcity. New York: World Watch Institute, 1996. 35-45.

[4] UN-ESCAP. Guidelines on water and sustainable development: principles and policy options. Water Resources Series, 1997, 77: 1-20.

[5] He Daming, Liu Changming, Yang Zhifeng. Study for the sustainability of international rivers in China. Acta Geographica Sinica, 1999, 54(suppl.): 1-10.
[何大明, 刘昌明, 杨志峰. 中国国际河流可持续发展研究. 地理学报, 1999, 54(增刊): 1-10.]

[6] Motoyuki S. Promoting academic debates for sustainable management of international rivers: the role of the UNU. He Daming et al. (eds.), Towards Cooperative Utilization and Co-ordinated Management of International Rivers. Science Press New York Ltd., 2001. 1-3.

[7] Chen Lihui, He Daming. The ecological impacts of hydropower cascade development in Lancang-Mekong River. Acta Geographica Sinica, 2000, 55(5): 577-586.
[陈丽晖, 何大明. 澜沧江-湄公河水电梯级开发的生态影响.地理学报, 2000, 55(5): 577-586.]

[8] TERRA. The business of climate change. Watershed, 2001, 7(1): 2-68.

[9] Ye Duzheng et al. Some advance in global change science study. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 435-450.
[叶笃正 等. 全球变化科学领域的若干研究进展. 大气科学, 2003, 27(4): 435-450.]

[10] Fu Congbin. Monsoon driven ecosystem: concept and some preliminary evidences. Proceedings of the Second International Study Conference on GEWEX in Asia and GAME. Pattaya, Thailand, March, 1995. 68-70.

[11] Zhang Jingyong et al. New evidence for effects of land cover in China on summer climate. Chinese Science Bulletin, 2003, 48(4): 401-405.

[12] Zhang Jingyong et al. Evidence for influence of vegetation cover change in China on summer precipitation. Adv. Atmos. Sci., 2003, 20(3): 415-424.

[13] You Weihong, Xia Xinjian, Zhao Ningkun. Establishment of the grid data for monthly precipitation and temperature in Yunnan province. Yunnan Geographic Environment Research, 2004, 16(1): 14-18.
[尤卫红, 夏欣健, 赵宁坤. 云南逐月雨量和气温的格点数据资料场建立. 云南地理环境研究, 2004, 16(1): 14-18.]

[14] Huang Jiayou. Statistic Analysis and Forecast Methods in Meteorology. Beijing: China Meteorological Press, 2000. 1-28.
[黄嘉佑.气象统计分析与预报方法. 北京: 气象出版社, 2000. 1-28.]

[15] You Weihong. Multiscale Diagnosis Analyses and Forecast Methods of Climate Changes. Beijing: China Meteorological Press, 1998. 37-42.
[尤卫红. 气候变化的多尺度诊断分析和预测的多种技术方法研究. 北京: 气象出版社, 1998. 37-42.]

[16] Minobe S, Manabe T, Shouji A. Maximal wavelet filter and its application to bidecadal oscillation over the Northern Hemisphere through the twentieth century. J. Climate, 2002, 15: 1064-1075.

文章导航

/