泥沙研究

利用Cokriging提高估算土壤盐离子浓度分布的精度——以黄河三角洲为例

展开
  • 1. 南京大学城市与资源学系, 南京 210093;
    2. 南京大学国际地球系统科学研究所, 南京 210093;
    3. 中国科学院资源与环境信息系统国家重点实验室, 北京 100101;
    4. 美国伯克利加州大学环境科学政策与管理系
王红 (1968-), 女, 讲师, 博士研究生。主要从事土壤盐渍化空间变异、土地利用/覆盖变化的研究。E-mail: hon.w@263.net

收稿日期: 2005-01-17

  修回日期: 2005-03-19

  网络出版日期: 2005-05-25

基金资助

中国科学院海外杰出学者基金项目 (2001-1-13);国家自然科学基金项目 (40371093);国家973 项目 (2001CB309404)

Use of Cokriging to Improve Estimates of Soil Salt Solute Spatial Distribution in the Yellow River Delta

Expand
  • 1. Dept. of Urban and Resources Sciences, Nanjing University, Nanjing 210093, China;
    2. International Institute for Earth System, Nanjing University, Nanjing 210093, China;
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    4. Dept. of Environment Science, Policy and Management, University of California, Berkeley, USA

Received date: 2005-01-17

  Revised date: 2005-03-19

  Online published: 2005-05-25

Supported by

CAS Fund for Outstanding Overseas Scholars, No.2001-1-13; National Natural Science Foundation of China, No.40371093; National 973 Project, No.2001CB309404

摘要

估算土壤中化学物质的含量与空间分布是了解多孔介质中水盐运移规律并进而因地制宜地提出盐渍土改良措施的关键。大面积的实地采样分析费时费力且耗资巨大。通过地统计分析, 使用有限的采样数据可获得土壤溶质的准确变异。本文探讨和比较了Ordinary kriging (OK) 与Cokriging (COK) 这两种内插方法。结果显示一半的采样点数据的COK较之全部采样点数据的OK精度更高, 相对均方根误差降幅为130.83%;采用同样的协同变量 (239个全盐量数据), 一半的采样点数据的COK较之全部采样点数据的COK精度更高, 相对均方根误差降幅为20.10%。协同变量与主变量的相关度决定了COK的预测精度, 当相关系数由77%升高为99%时, 相对均方根误差降低了48.30%。

本文引用格式

王红, 刘高焕, 宫鹏 . 利用Cokriging提高估算土壤盐离子浓度分布的精度——以黄河三角洲为例[J]. 地理学报, 2005 , 60(3) : 511 -518 . DOI: 10.11821/xb200503018

Abstract

Estimation of the quantity and distribution of soil chemicals is a major component in the study of chemical transportation in the vadose zone and groundwater system. Such information is also essential in undertaking any proper measures to meliorate soil salinization. However, it is a time-consuming, laborious, and expensive process to carry out detailed sampling in the field, especially when it is large. Accurate variability of soil solute can be determined from a limited number of the available samples through geostatistical analysis. In this study two interpolation methods (ordinary kriging and cokriging) were compared with each other in terms of their accuracy. It is found that cokriging of half of the observations (239) resulted in more accurate results than ordinary kriging of all the samples. Cokriging is able to reduce relative root mean square error (RMSE) by 130.83% in comparison with ordinary kriging. Using the same number of samples (239) for the secondary variable (total salt), cokriging attained a higher accuracy with half of the samples than it did with all the samples, the relative reduction of RMSE being 20.10%. Furthermore, the relationship between the secondary and the primary variables governs the estimation accuracy. As the correlation coefficient between them increases from 77% to 99%, the relative RMSE of estimation is reduced by 48.30%.

参考文献


[1] Zhang R, Shouse P, Yates S. Use of pseudo-crossvariograms and cokriging to improve estimates of soil solute concentrations. Soil Sci. Soc. Am. J., 1997, 61: 1342-1347.

[2] Sabit E. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Sci. Soc. Am. J., 2003, 67: 1848-1855.

[3] Campbell J B. Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units. Soil Sci. Soc. Am. J., 1978, 42: 460-464.

[4] Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties: I. the semivariogram and punctual Kriging. J. Soil Sci., 1980, 31: 315-331.

[5] Warrick A W, Myer D E, Nielsen D R. Geostatistical methods applied to soil science. In: Klute A (ed.), Methods of Soil Analysis: Part 1. (2nd edn.). Agron. Monogr. 9. ASA and SSSA, Madison, WI, 1986, 53-82.

[6] Xu Jiyan. Geostatistical best estimates on soil survey data: estimation on soil N of surface layer in Zhangwu county using semivariogram and block kriging. Acta Pedol. Sin., 1983, 20(4): 419-430.
[徐吉炎. 土壤调查数据地域统计的最佳估值研究: 彰武县表层土全氮量的半方差图和块状Kriging估值. 土壤学报, 1983, 20(4): 419-430.]

[7] Lei Zhidong, Yang Shixiu, Xu Zhirong et al. Primary analysis on the spatial variability of soil characters. Journal of Hydraulic Engineering, 1985, (9): 10-21.
[雷志栋, 杨诗绣, 许志荣 等. 土壤特性空间变异性初步研究. 水利学报, 1985, (9): 10-21.]

[8] Chen Zhixiong, Vauclin M. Research on soil water balance of Fengqiu area. Acta Pedol. Sin., 1989, 26(4): 309-315.
[陈志雄, M Vauclin. 封丘地区土壤水分平衡研究. 土壤学报, 1989, 26(4): 309-315.]

[9] Vieira S R, Nielsen D R, Biggar J W. Spatial variability of field-measured infiltration rate. Soil Sci. Soc. Am. J., 1981, 51: 23-30.

[10] Vauclin M, Vieira S R. The use of cokriging with limited field observations. Soil Sci. Soc. Am. J., 47: 175-184.

[11] Issaks H E, Srivastava R M. An Introduction to Applied Geostatistics. New York: Oxford Univ. Press, 1989.

[12] Stein A, van Dooremolen W, Bouma J et al. Cokriging point data on moisture deficit. Soil Sci. Soc. Am. J., 1988, 52: 1418-1423.

[13] Stein A, Corsten L C. A. Universal Kriging and cokriging as a regression procedure. Biometrics, 1991, 47: 575-588.

[14] Zhang R, Myers D E, Warrick A W. Estimation of the spatial distribution of the soil chemicals using pseudo cross-variograms. Soil Sci. Soc. Am. J., 1992, 56: 1444-1452.

[15] Istok J D, Smyth J D, Flint A L. Multivariate geostatistical analysis of ground-water contaminant: a case history. Ground Water, 1993, 31: 63-74.

[16] Triantafilis J, Odeh I O, Mcbratney A B. Five Geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J., 2001, 65: 869-878.

[17] Chen Yaxin, Shi Haibin. Co-kriging estimation on the spatial variability of soil salt solute and ions grade. Journal of Hydraulic Engineering, 1998, (6): 35-40.
[陈亚新, 史海滨. 盐溶质及其离子品位空间变异性. 水利学报, 1998, (6): 35-40.]

[18] Hu Kelin, Li Baoguo, Chen Deli et al. Spatial variability of soil water and salt in field and their estimations by the cokriging. Adcances in Water Science, 2001, 12(4): 460-466.
[胡克林, 李保国, 陈德立 等. 农田土壤水分和盐分的空间变异性及其协同克立格估值. 水科学进展, 2001, 12(4): 460-466.]

[19] Zhao Chengyi, Wang Yuchao, Li Ziliang et al. Study on the spatial variability of soil moisture content and salt content in the field scale. Arid Zone Research, 2003, 20(4): 252-256.
[赵成义, 王玉潮, 李子良 等. 田块尺度下土壤水分和盐分的空间变异性. 干旱区研究, 2003, 20(4): 252-256.]

[20] Shouse P J, Gerik T J, Russell W B et al. Spatial distribution of soil particle size and aggregate stability index in a clay soil. Soil Sci. Soc. Am. J., 1990, 149: 351-360.

[21] Martinez C A. Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J. Hydrology, 1996, 174: 19-35.

[22] Wang Zunqin, Zhu Shouquan, Yu Renpei et al. Saline Soil in China. Beijing: Science Press, 1993., 43-59.
[王遵亲, 祝寿泉, 俞仁培 等. 中国盐渍土. 北京: 科学出版社, 1993. 43-59.]

[23] Wang Chunyu, Wu Zhijie, Wang Ruyong et al. Exploitation and utilizing of coastal salinized soil in modern Yellow River Delta. Chinese Journal of Soil Science, 2001, 32(supp1.): 1-2.
[王春裕, 武志杰, 王汝镛 等. 近代黄河三角洲的滨海盐渍土及其开发利用. 土壤通报, 2001, 32(增刊): 1-2.]

[24] Qin Yaodong. Soil Physics. Beijing: Higher Education Press, 2003. 202-218.
[秦耀东. 土壤物理学. 北京: 高等教育出版社, 2003. 202-218.]

[25] Liu Youkai, Jiang Baifan, Yuan Keneng. Conventional Analysis Method on Soil Agriculture Chemistry. Beijing: Science Press, 1983.
[李酋开, 蒋柏藩, 袁可能. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983.]

[26] Clark I. Practical Geostatistics. London: Applied Science Publishers, Ltd., 1979.

[27] Webster R. Quantitative spatial analysis of soil in the field. Advance in Soil Science, 1985, (3): 2-66.

[28] Wang Zhengquan. Geostatistics and Its Application in Ecology. Beijing: Science Press, 1999. 35-149.
[王政权. 地统计学及其在生态学中的应用. 北京: 科学出版社, 1999. 35-149.]

[29] Zeng Shan, Yao Yonghui. ArcGIS Geostatistical Analyst User's Guide. Beijing: ArcInfo Consulting and Training Center, China, Beijing CASW Data Technology Co., Ltd., 2002, 121-221.
[曾杉, 姚永慧. ArcGIS地统计分析实用指南. 北京: ArcInfo中国技术咨询与培训中心中国中科永生数据科技有限公司, 2002. 121-221.]

[30] Goovaerts P. Geostatistics for natural resources evaluation. New York: Oxford University Press, 1997.

[31] Shi Yuanchun, Li Yunzhu. The Movement of Moisture and Salt within the Salinity Soil. Beijing: Agriculture University Press, 1986. 13.
[石元春, 李韵珠. 盐渍土的水盐运动. 北京: 农业大学出版社, 1986. 13.]

[32] Liu Gaohuan, Ye Qinghua, Liu Qingsheng et al. Environment Dynamic Monitoring and Digital Simulating in Yellow River Delta. Beijing: Science Press, 2003, 53.
[刘高焕, 叶庆华, 刘庆生 等. 黄河三角洲生态环境动态监测与数字模拟. 北京: 科学出版社, 2003, 53.]

[33] Journel A G, Huijbregts C J. Mining Geostatistics. New York: Academic Press, 1978.

[34] Robertson G P, Klingensmith K M, Klug M J et al. Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications, 1997, 7 (1): 158-170.

[35] Cambardella C A, Moorman T B, Novak J M et al. Field-scale variability of soil properties in central Iowa soil. Soil Sci. Soc. Am. J., 1994, 58: 1501-1511.

[36] Zhou Huizhen, Gong Zitong, Lamp J. Spatial variation of soil. Acta Pedol. Sin., 1996, 33(3): 232-241.
[周慧珍, 龚子同, J Lamp. 土壤空间变异性研究. 土壤学报, 1996, 33(3): 232-241.]

文章导航

/