流域环境模拟

长江干流主要营养盐含量的变化特征——1998~1999年日中合作调查结果分析

展开
  • 1. 日本国立环境研究所,流域圈环境管理研究组,筑波 305-8506;
    2. 长江水利委员会水资源保护局,武汉 430051
徐开钦 (1962- )、1983年毕业于中国武汉水利电力学院(现武汉大学)、1984年赴日本东北大学留学、1990年取得工学博士学位后,任新日本气象海洋株式会社(现国土环境株式会社)研究员、1992年任日本东北大学工学部助教、1996年任副教授、1997年任日本国立环境研究所主任研究员至今。主要从事湖泊水库及内湾水域的富营养化机理,饮用水和生活污水等处理技术,流域环境管理等方面的研究。共发表著书6部、学术杂志/国际会议论文及综述等100余篇。E-mail: joexu@nies.go.jp

收稿日期: 2003-09-23

  修回日期: 2003-11-07

  网络出版日期: 2004-01-25

基金资助

日本国环境省“流域环境管理国际共同研究 (重点共同研究)”项目

Characteristics of Water Quality in the Changjiang River: Observations Conducted in 1998 and 1999

Expand
  • 1. Watershed Management Research Team, National Institute for Environmental Studies, Tsukuba 305-8506, Japan;
    2. Changjiang Water Resources Protection Bureau, Changjiang Water Resources Commission, Wuhan 430051, China

Received date: 2003-09-23

  Revised date: 2003-11-07

  Online published: 2004-01-25

Supported by

he Asia Pacific Environmental Innovation Strategy Project (APEIS) from Japanese Ministry of Environment

摘要

根据1998年和1999年秋季在长江干流从重庆至长江口进行的纵向采样和分析,对长江干流的各态氮、磷含量的沿江变化进行研究。从整体上了解长江干流的水质变化特性,特别是营养盐含量的分布状况。研究结果表明,长江干流的SS浓度很高,介于50~400 mg/l。TN、 TP浓度分别在70~110 μmol/L、2~25 μmol/L之间,前者以NO3-N为主,后者以PTP为主,PO4-P含量仅占TP的10%~20%。DIN/PO4-P的比值在70~160之间,远高于浮游植物生长P限制值,表明长江口及临近海域中P可能是生物生命活动的主要限制因素。葛洲坝水库对SS、TP、TN、NH4-N、BOD、COD等水质有一定的净化作用。长江水体在通过各大城市以及两大湖泊时,BOD、 NH4-N负荷的增加迅速,特别是通过重庆、武汉、南京、上海及洞庭湖和鄱阳湖之后尤为明显。N、P含量的上升与人口增长、生活污水排放量及流域内化肥施用量增加有关。洞庭湖和鄱阳湖水系以及周围的面源负荷,对长江流域的营养盐变动有很大的影响。

本文引用格式

徐开钦,林诚二,牧秀明,村上正吾,徐保华,渡边正孝 . 长江干流主要营养盐含量的变化特征——1998~1999年日中合作调查结果分析[J]. 地理学报, 2004 , 59(1) : 118 -124 . DOI: 10.11821/xb200401015

Abstract

In order to better understand the biogeochemical process of the Changjiang (Yangtze) River and pollutant load flowed into the East China Sea from the river and provide scientific basis for eco-environmental and water resources protection, field surveys along the Changjiang River from Chongqing to Shanghai (about 2300 km long) were carried out in autumns of 1998 and 1999 through the international cooperative study between the National Institute for Environmental Studies (NIES), Japan and the Changjiang Water Resources Commission, China. In this paper, the preliminary results of water quality conducted in the joint survey were presented. From the concentration variations of SS, DOC, T-P, NH4-N, NO3-N and DT-N along the main course of the Changjiang River during both surveys of 1998 and 1999, it is evident that the concentrations of SS and nutrients in the autumn of 1999 were higher than that in the summer of 1998, because the influence of non-point pollutant source and the discharge and water level during the survey period in 1999 was much higher than that in 1998. On the other hand, the general tendency of the nutrient distribution increased from upstream to downstream along the main course of the Changjiang; the concentrations of nutrients were evidently higher in the downstream of big cities than that in the upstream of these big cities. Water quality was improved after passing through the Gezhouba Dam. It was also found that the BOD and NH4-N concentrations increased sharply after passing Dongting and Poyang lakes.

参考文献


[1] Yangtze River Yearbook Editorial Committee. Yangtze River Yearbook 1999. Wuhan: Changjiang Water Resources Commission Yearbook Press, 1999.
[长江年鉴编纂委员会. 长江年鉴1999. 武汉: 长江水利委员会年鉴社出版, 1999.]

[2] Fang Ziyun. The main problems of water environments in Yangtze River Basin. Resources and Environment in the Yangtze River Valley, 1997, 6(4): 346-349.
[方子云. 长江流域水环境的主要问题. 长江流域资源与环境, 1997, 6(4): 346-349.]

[3] China Environment Yearbook Editorial Committee. China Environment Yearbook 1999. Beijing: China Environment Yearbook Press, 1999.
[中国环境年鉴编辑委员会. 中国环境年鉴1999. 北京: 中国环境年鉴社出版, 1999.]

[4] Ministry of Water Resources of People's Republic of China. China Water Resources Bulletin, 1999.
[中华人民共和国水利部. 中国水资源公报, 1999.]

[5] Kaiqin Xu, Ryuichi Sudo: Handbook on Chinese Environment: Vol.2, Chapter 3 Water Pollution, Published by Science Forum Corporation, 1997. 273-316. (in Japanese)

[6] Kaiqin Xu, Jiqun Zhang, Masataka Watanabe. Water environment of Changjiang River (7): water pollution and its control. Journal of Water and Waste, 2001, 43(5): 408-418. (in Japanese)

[7] Kaiqin Xu, Jiqun Zhang, Masataka Watanabe. Outline of the water resources and its utilization in China (Part 2). Journal of Resources and Environment, 2003, 39(1): 187-199. (in Japanese)

[8] Kaiqin Xu, Jiqun Zhang, Shogo Murakami et al. Analysis of the sediment deposition and transportation in Changjiang River Basin: from the Report of the Sediment in Changjiang River 2000. Journal of Water and Waste, 2003, 45(3): 247-253. (in Japanese)

[9] Chen Jingsheng, Guan Wenrong. Evolution in water quality and its relation with environmental acidification in the upper and middle reaches of the Yangtze River. Acta Scientiae Circumstantiae, 1998, 18(3): 265-270.
[陈静生, 关文荣. 长江中上游水质变化趋势与环境酸化关系初探. 环境科学学报, 1998, 18(3): 265-270.]

[10] Chen Jingsheng, Gao Xuemin, Xia Xinghui et al. A probe into several problems of water quality trends in the mainstream of Yangtze River from 1960s to 1980s. Environmental Chemistry, 1998, 17(1): 8-13.
[陈静生, 高学民, 夏星辉 等. 长江干流近三十年来水质变化探析. 环境化学, 1998, 17(1): 8-13.]

[11] Zhang Jing et al. Chemical trend of national rivers in China: Huanghe and Changjiang. Ambio, 1995, 24: 274-278.

[12] Duan Shuiwang, Zhang Shen, Chen Xibao et al. Concentrations of nitrogen and phosphorus and nutrient transport to estuary of the Yangtze River. Environmental Science, 2000, 21(1): 53-56.
[段水旺, 章申, 陈喜保 等. 长江下游氮、磷含量变化及其输送量的估计. 环境科学, 2000, 21(1): 53-56.]

[13] Meybeck M. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci., 1982, 282: 401-450.

文章导航

/