卫星遥感监测

青藏高原主要生态系统净初级生产力的估算

展开
  • 1. 中国科学院地理科学与资源研究所,北京 100101;
    2. 日本国立环境研究所,筑波 305-8506;
    3. 石油大学 (华东) 环境科学与工程系,东营 257062
周才平(1972-), 男, 博士, 主要从事生态系统生态学研究。E-mail: zhoucp@igsnrr.ac.cn

收稿日期: 2003-09-19

  修回日期: 2003-11-20

  网络出版日期: 2004-01-25

基金资助

国家自然科学基金重点项目 (40331006), 亚洲太平洋地区环境创新战略项目环境综合监侧子课题

Estimation of Net Primary Productivity in Tibetan Plateau

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. National Institute for Environmental Studies, Tsukuba 305-8506, Japan;
    3. University of Petroleum China, Dongying 257062, China

Received date: 2003-09-19

  Revised date: 2003-11-20

  Online published: 2004-01-25

Supported by

National Natural Science Foundation of China, No.40331006; Integrated Environmental Monitoring (IEM) Subproject, the Asia-Pacific Environmental Innovation Strategy Project (APEIS)

摘要

利用青藏高原贡嘎山、海北、五道梁、拉萨等4个野外台站2000~2002年的观测数据、陆地生态系统模型与2001年MODIS遥感数据相结合的方法来估算青藏高原区域的净初级生产力。结果表明:青藏高原区域的净初级生产力空间分布趋势表现出由东南向西北逐渐递减的梯度,该趋势也与水热梯度表现基本一致;整个青藏高原的净初级生产力为302.44×1012 gC yr-1,其中森林的净初级生产力最高,120.11×1012 gC yr-1,占整个高原净初级生产力的39.7%;全年中夏季 (6~8月) 的净初级生产力最高,246.7×1012 gC yr-1,约占全年总净初级生产力的80%。用实测数据验证模拟结果表明,二者非常相符。

本文引用格式

周才平,欧阳华,王勤学,渡边正孝,孙青强 . 青藏高原主要生态系统净初级生产力的估算[J]. 地理学报, 2004 , 59(1) : 74 -79 . DOI: 10.11821/xb200401009

Abstract

The Tibetan Plateau is the least human-disturbed region in the world. Its outstanding topographic features and ecological characteristics give it a fame of "Natural Lab" for global change research. An improved TEM model based on MODIS satellite data and field observations data during 2000-2002 were used to estimate annual net primary productivity (NPP) in the Tibetan Plateau. A validation by using the observed NPP at different sites shows that the estimated NPP is well agreed with the measured NPP. The simulated results show that the estimated annual primary productivity of the entire Tibetan Plateau is 302.44×1012 gC yr-1, among which forest NPP takes up 39.7% of the total, though forests comprise only 9.74% of the Tibetan Plateau region; NPP accumulation for summer is 246.7×1012 gC yr-1, which is 80% of the year total.

参考文献


[1] Cramer W, Field C.B. Comparing global models of terrestrial net primary productivity (NPP): introduction. Global Change Biology, 1999, 5: 3-4.

[2] Euskirchen E S, Chen J, Li H et al. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes. Ecological Modelling, 2002, 154: 75-91.

[3] Matsushita B, Tamura M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Environment, 2002, 81: 58-66

[4] Li W H, Zhou X M. Ecosystems of Qinghai-Xizang (Tibetan) Plateau and Approach for Their Sustainable Management. Guangzhou: Guangdong Science and Technology Press, 1998. 56-101.
[李文华, 周兴民. 青藏高原生态系统与可持续管理方法. 广州: 广东科技出版社, 1998. 56-101.]

[5] Sun H L, Zheng D (eds.). Formation, Evolution and Development of Tibetan Plateau. Guangzhou: Guangdong Science and Technology Press, 1998.
[孙鸿烈, 郑度 主编. 青藏高原的形成、演化及进展. 广州: 广东科技出版社, 1998.]

[6] Zheng D, Zhang Q, Wu S. Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Dordrencht: Kluwer Academic Publishers, 2000.

[7] Lieth H. Primary production: terrestrial ecosystems. Human Ecol., 1973, 1: 303-332.

[8] Esser G, Lieth H F H, Scurlock J M O et al. The high resolution biosphere model: status of development, validation, results. Sci. Geol. Bull. Strasbourg, 1997, 50(4): 73-88.

[9] Raich J W, Rastetter E B. Potential net primary production in South America. Ecol. Appl., 1991, 1: 399-429.

[10] McGuire A D, Melillo J M, Kicklighter D W et al. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide. Cycles, 1997, 11: 173-189.

[11] Parton, W J, Scurlock J M O, Ojima D S et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7: 785-809.

[12] Potter C S, Randerson J T, Field C B et al. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7: 811-841.

[13] Running S W, Hunt E R Jr. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer J R, Field C B (eds.), Scaling Physiological Processes. New York: Academic Press, 1993. 141-158.

[14] Ludecke M K B, Badeck F W, Otto R D et al. The Frankfurt biosphere model: a global process oriented model of seasonal and long-term CO2 exchange between terrestrial ecosystems and the atmosphere: I. model description and illustrative results for cold deciduous and boreal forests. Clim. Res., 1994, 4: 143-166.

[15] Kaduk J, Heimann M. A prognostic phenology scheme for global terrestrial carbon cycle models. Clim. Res., 1996, 6: 1-19.

[16] Friend A D, Stevens A K, Knox R G et al. A process-based terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Model., 1997, 95: 249-287.

[17] Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biol., 1998, 4: 185-198.

[18] V?r?smarty C J, Moore B III, Grace A L et al. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles, 1989, 3: 241-265.

[19] Larcher W. Physiological Plant Ecology. 2nd edn. Berlin, West Germany: Springer-Verlag, 1980.

[20] Daly C, Taylor G H, Gibson W P et al. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE, 2000, 43: 1957-1962.

[21] Daly C, Neilson R P, Phillips D L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 1994, 33: 140-158.

[22] New M, Hulme M, Jones P D. Global 30-year mean monthly climatology, 1961-1990 (New et al.). Available online at
[http://www.daac.ornl.gov/] from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. 2000.

[23] Melillo J M, McGuire A D, Kicklighter D W et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240.

[24] Fang J Y, Liu G H, Xu S L. Carbon pools of Chinese terrestrial ecosystems. In: Current Issues in Modern Ecological Research. Beijing: China Science and Technology Press, 1996. 251-267.
[方精云, 刘国华, 徐嵩龄. 中国陆地生态系统库. 现在生态学热点问题研究. 北京: 中国科学技术出版社, 1996. 251-267.]

[25] Luo T X, Li W H, Luo J et al. A comparative study on biological production of major vegetation types on the Tibetan Plateau. Acta Ecologica Sinica, 1999, 19: 823-831.
[罗天祥, 李文华, 罗辑 等. 青藏高原主要植被类型生物生产量的比较研究. 生态学报, 1999, 19: 823-831.]

文章导航

/