环境变迁

藏南沉错湖泊沉积多指标揭示的2万年以来环境变化

展开
  • 1. 中国科学院地理科学与资源研究所,北京 100101;
    2. 中国科学院青藏高原研究所,北京 100085;
    3. 中国科学院研究生院,北京 100039;
    4. 中国科普研究所,北京 100081;
    5. 中国科学院广州地球化学研究所,广州 510640;
    6. 日本名古屋大学年代综合研究实验室;
    7. 瑞典乌普萨拉大学材料科学系
朱立平 (1965-), 男, 研究员, 博士生导师, 主要从事环境变化与岩石风化研究。E-mail: zhulp@igsnrr.ac.cn

收稿日期: 2003-11-19

  修回日期: 2004-03-15

  网络出版日期: 2004-07-25

基金资助

国家自然科学基金重点项目 (40331006);中科院知识创新工程项目 (KZCX3-SW-339) 资助

20,000-year Environmental Change Reflected by Multidisciplinary Lake Sediments in Chen Co, Southern Tibet

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Institute of Tibetan Plateau Research, CAS, Beijing 100085, China;
    3. Graduate School of Chinese Academy of Sciences, Beijing 100039, China;
    4. Chinese Research Institute of Science Popularization 100081, China;
    5. Guangzhou Institute of GeoChemistry, CAS, Guangzhou 510640, China;
    6. Integrated Laboratory of Chronology, Nagoya University, Japan;
    7. Department of Material Sciences, Uppsala University, Sweden

Received date: 2003-11-19

  Revised date: 2004-03-15

  Online published: 2004-07-25

Supported by

Key Project of National Natural Science Foundation of China, No.40331006; Knowledge Innovation Project of CAS, No.KZCX3-SW-339

摘要

通过对藏南沉错湖芯TC1孔的研究,分析了TC1孔的粒度、ToC、TN、C/N、Fe/Mn、Sr/Ba以及环境磁学参数等环境代用指标,基本上获得了这一地区2万年以来的环境变化记录。结果显示约19 800~18 000 Cal aBP的温度下降在各指标中具有明显的反映;约16 000 Cal aBP左右,温度在一次跃动上升之后,随即出现急剧下降;约15 200~12 000 Cal aBP,是降温之后的缓慢回升过程;约12 000~9 500 Cal aBP,各种指标均显示湖区环境处于不适宜阶段,特别是11 600~10 400 Cal aBP,湖区环境显著恶化。进入全新世后,湖区环境经历了3次明显的暖期 (约9 500~7 600 Cal aBP、约6 800~5 800 Cal aBP、约4 800~3 800 Cal aBP) 和2次冷期 (约7 600~6 800 Cal aBP、约5 800~4 800 Cal aBP),呈现出暖干/冷湿的交替规律,具有南亚季风 (西南季风) 区气候变化的特征。沉错湖区2万年来的气候环境变化序列中的某些特征时段与格陵兰冰芯记录和青藏高原其他记录相比具有较好的一致性,反映了湖区及藏南地区的气候环境演变特征具有全球性特征。

本文引用格式

朱立平,王君波,陈玲,杨京蓉,李炳元,朱照宇,HiroykiKitagawa,G?ranPossnert . 藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J]. 地理学报, 2004 , 59(4) : 514 -524 . DOI: 10.11821/xb200404004

Abstract

A 20,000-years environmental record is elucidated by analyzing the environmental proxies such as grain size, ToC, TN, C/N, Fe/Mn, Sr/Ba and environmental magnetism parameters from a lake core (TC1) in Southern Tibet area. Results showed that during the period of ca. 19800-18000 Cal aBP, the decreasing temperature was reflected by all analyzed proxies. Temperature appeared a jump rise around ca. 16000 Cal aBP and then had an abrupt decrease. About 15200-12000 Cal aBP, temperature slowly re-rose. However, almost all the proxies indicated that the environment was unsuitable for lives existing during ca. 12000-9500 Cal aBP. Especially during ca. 11600-10400 Cal aBP, the environment became deteriorated. From the beginning of HoloCene, the environment experienced 3 obvious warm stages (ca. 9500-7600 Cal aBP, ca. 6800-5800 Cal aBP, ca. 4800-3800 Cal aBP) and 2 cold stages (ca.7600-6800 Cal aBP, ca. 5800-4800 Cal aBP), representing obvious alternation of warm-dry and cold-wet, having the climatic change characteristics of South Asian monsoon (southwest monsoon) zone. Some characters of the 20,000-year climatic and environmental change sequence in Chen Co area had rather good coherence with Greenland ice core records (GISP2) and other environmental records on the Tibetan Plateau, reflecting that the environmental changes in this area had certain global significance.

参考文献


[1] Oldfield F (ed.). IGBP Report 45: Past Global Changes (PAGES). StoCkholm, 1998. 25.

[2] Flohn H. Contributions to a meteorology of the Tibetan highlands. Atmospheric Science Paper, 1968, 130: 182-225

[3] Li Jijun, Wen Shixuan, Zhang Qingsong et al. A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau. Scientia Sinica, 1979, X XII(11): 1314-1328.
[李吉均, 文世宣, 张青松 等. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学, 1979, (6): 608-616.]

[4] Tang MaoCang, Li Cunqiang. An analysis on the Qinghai-Xizang Plateau as "a disturbing source region" for climatic changes. In: China SoCiety on the Tibetan Plateau (ed.), ProCeedings of the First Symposium on the Qinghai-Xizang Plateau. Beijing: Science Press, 1992. 42-48.

[5] Li Bingyuan, Li Yuanfang, Kong ZhaoChen et al. 20000 years environmental changes of the Gonong Co in Hoh Xil, Qinghai. Chinese Science Bulletin, 1995, 40(12): 1055-1056.
[李炳元, 李元芳, 孔昭宸 等. 青海可可西里苟弄错近二万年来的环境变化. 科学通报, 1994, 39(18): 1727-1728.]

[6] Li Bingyuan, Wang Sumin, Zhu Liping et al. 12 kaBP lake environment on the Tibetan Plateau. Science in China (Series D), 2001, 44(suppl.): 324-331.
[李炳元, 王苏民, 朱立平 等. 12 kaBP前后青藏高原湖泊环境. 中国科学(D辑), 2001, 31(增刊): 258-263.]

[7] Zhang Pengxi. The study of paleoClimatic parameter of Qinghai Lake since HoloCene. Quaternary Sciences, 1994, (3): 225-238.
[张彭熹. 青海湖全新世以来古环境参数的研究. 第四纪研究, 1994, (3): 225-238.]

[8] Huang Qi. A preliminary study on the sedimentation rate and paleoClimantic change of the sediments in Qinghai Lake. Chinese Science Bulletin, 1988, (22): 1740-1744.
[黄麒. 青海湖沉积物的沉积速率及古气候演变的初步研究. 科学通报, 1988, (22): 1740-1744.]

[9] Gasse F, Arnold M, Fontes J C et al. A 13000-year climate record from Western Tibet. Nature, 1991, 353(24): 742-745

[10] Gasse F, Fontes J C, Van Campo E et al. HoloCene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Palaeogeography PalaeoClimatology Palaeoecology, 1996, 120: 79-92.

[11] Fontes J Ch, Gasse F, Gilbert E. HoloCene environmental changes in Lake Bangong Basin (Western Tibet). Part 1: Chronology and stable isotopes of Carbonates of a HoloCene lacustrine core. Paleogeography PaleoClimatology Paleoecology, 1996, 120: 25-47.

[12] Fan H, Gasse F, Huc A et al. HoloCene environmental changes in Bangong Co basin (Western Tibet). Part 3: Biogenic remains. Paleogeography PaleoClimatology Paleoecology, 1996, 120: 65-78

[13] Gu Zhaoyan, Liu JiaqiYuan, Yuan Baoyin et al. Monsoon variations of the Qinghai-Xizang Plateau during the last 12000 years: geoChemical evidence from the sediments in the Siling Lake. Chinese Science Bulletin, 1993, 38(7): 577-581.
[顾兆炎, 刘嘉麒,袁宝印, 等. 12000年来青藏高原季风变化——色林错沉积物地球化学的证据. 科学通报, 1993, 38(1): 61-64.]

[14] Kashiwaya K, Masuzawa T, Morinaga H et al. Changes in hydrological conditions in the central Qing-Zang (Tibetan) Plateau inferred from lake bottom sediments. Earth and Planetary Science Letters, 1995, 135: 31-39.

[15] Wen Shixuan, Zhang Binggao. Stratigraphy of Xizang (Tibetan) Plateau. Beijing: Science Press, 1984. 109-124.

[16] Li Bingyuan, Wang Fubao, Zhang Qingsong et al. Quaternary Geology in Xizang. Beijing: Science Press, 1983. 1-6.

[17] Guan Zhihua, Chen Chuanyou, Ou Yuxiong et al. Rivers and Lakes of Xizang. Beijing: Science Press, 1984. 159-168.

[18] Li Jijun, Zheng Benxing, Yang Xijin et al. Glaciers of Xizang (Tibet). Beijing: Science Press, 1986. 67-79.

[19] Chen Tiemei. Progress and problems in Quaternary dating. Quaternary Sciences, 1995, (2): 182-191.
[陈铁梅. 第四纪测年的进展与问题. 第四纪研究, 1995, (2): 182-191.]

[20] Special Committee on Agricultural Chemistry of Soil Science SoCiety of China (ed.). Routine Analysis Methods on Soil Agriculture Chemistry. Beijing: Science Press, 1983. 67-85.

[21] Stuiver M, Reimer P. Extended 14C database and revised CALIB 3.0 14C age calibrating program. RadioCarbon, 1993, 35(1): 215-230.

[22] Li Bingyuan, Zhu Liping. "Greatest lake period" and its palaeo-environment on the Tibetan Plateau. Journal of Geographical Sciences, 2001, 11(1): 34-42.

[23] Shen Ji, Zhang Enlou, Xia Weilan. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1000 years. Quaternary Sciences, 2001, 21(6): 508-513.
[沈吉, 张恩楼, 夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录. 第四纪研究, 2001, 21(6): 508-513.]

[24] Wang Junbo, Zhu Liping. Grain-size characteristics and their Paleo-environmental significance of Chen Co Lake sediments in Southern Tibet. Progress in Geography, 2002, 21(5): 459-467.
[王君波, 朱立平. 藏南沉错沉积物的粒度特征及其古环境意义. 地理科学进展, 2002, 21(5): 459-467.]

[25] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 1994, 114: 289-302.

[26] Lanzhou Institute of Geology. Integrated Investigation Reports of Qinghai Lake. Beijing: Science Press, 1979. 156-169.

[27] Bremenner J M, Mulvaney C S. Nitrogen-Total. In: Page A L (ed.), Methods of Soil Analysis, Part 2 (2nd edn.): Chemical and Microbiological Properties. ASA, SSSA, Madison, 1982, WI: 595-624.

[28] Jones B F, Bowers C J. Mineralogy and linked chemistry of lake sediments. In: Lerman A (ed.), Lakes: Chemistry Geology Physics. New York: Springer-Verlag, 1978.

[29] Davison W. Iron and manganese in lakes. Earth Science Review, 1993, 34: 119-163.

[30] Wersin P, H?觟hener P, Giovanoli R et al. Early diagenetic influence on iron transformations in a freshwater lake sediment. Chemical Geology, 1991, 90: 233-252.

[31] Zhu Liping, Chen Ling, Li Bingyuan et al. Environmental changes reflected by the lake sediments of the South Hongshan lake, Northwest Tibet. Science in China (Series D), 2002, 45(5): 430-439.
[朱立平, 陈玲, 李炳元 等. 西昆仑山南红山湖沉积反映的过去150年湖区环境变化. 中国科学(D辑), 2001, 31(7): 601-607.]

[32] Thompson R, Oldfield F. Environmental Magnetism. London: Allen & Unwin Ltd, 1986. 102 pp.

[33] Dearing J A. HoloCene environmental change from magnetic proxies in lake sediment. In: Maker B A, Thompson R (eds.), Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press, 1999. 233-234.

[34] Dearing J A, Hu Y-Q, Doody P et al. Preliminary reconstruction of sediment-source linkages for the past 6000 yrs at the Petit Lac d'Annecy, France, based on mineral magnetic data. Journal of Paleolimnology, 2001, 25: 245-258.

[35] Zhu Liping, Zhang Pingzhong, Xia Weilan et al. 1400-yrs cold/warm fluctuations reflected by environmental magnetism of a lake sediment core from the Chen Co, southern Tibet, China. Journal of Paleolimnology, 2003, 29(4): 391-401.

[36] Irving E, Molyneux L, Runcorn S K. The analysis of remanent intensities and susceptibilities of roCks. Geophysical Journal of the Royal Astronomical SoCiety, 1966, 10: 451-464.

[37] Stuiver M, Grootes P M, Braziunas T F. The GISP2 ?啄18O climate record of the past 16500 years and the role of the sun, oCean, and volcanoes. Quaternary Research, 1995, 44(3): 341-354.

[38] Liu Xingqi, Shen Ji, Wang Sumin et al. A 16000-year pollen record of Qinghai Lake and its paleoClimate and paleoenvironment. Chinese Science Bulletin, 2002, 47(22): 1931-1936.
[刘兴起, 沈吉, 王苏民 等. 青海湖16ka以来的花粉记录及其古气候古环境演化. 科学通报, 2002, 47(17): 1351-1355.]

[39] Van Campo E, Gasse F. Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13000 yr B.P. Quaternary Research, 1993, 39: 300-313.

[40] Li Yuanfang, Zhang Qingsong, Li Bingyuan et al. Ostracod fauna and environmental changes during the past 17000 years in the western Tibet. Acta Geographica Sinica, 1994, 49(1): 46-54.
[李元芳, 张青松, 李炳元,等. 青藏高原西北部17000a以来的介形类与环境演变. 地理学报, 1994, 49(1): 46-54.]

[41] Lister G S, Kelts K, Chen K Z et al. Lake Qinghai: China closed-basin lake levels and the oxygen isotope record for Ostracoda since the latest PleistoCene. Palaeogeography PalaeoClimatology Palaeoecology, 1991, 84: 141-162.

[42] Jiao Keqin, Yao Tandong. Variations of the Guliya ice cap and climatic record since the Younger Dryas. In: Expert Committee on Qinghai-Tibetan Project (eds), Annuals of Research on Formation and Evolution, Environmental Change and Ecology System on Qinghai-Tibetan Plateau (1994). Beijing: Science Press, 1995. 34-40.

[43] Peng Jinlan. Ostracod assemblages and environmental changes during 13000-4500 aB.P. in Peiku Co, Tibet. Acta Micropalaeontologica Sinica, 1997,14(3): 239-254.
[彭金兰. 西藏佩枯错距今13000-4500年间的介形类及环境变迁. 微体古生物学报, 1997, 14(3): 239-254.]

[44] Zhang Zhengke, Wu Ruijin, Shen Ji et al. Lacustrine records showing climatic changes in Erhai Lake, Yunnan Province since the past 2000 years. Marine Geology and Quaternary Geology, 2001, 21(2): 31-35.
[张振克, 吴瑞金, 沈吉 等. 近2000年来云南洱海沉积记录的气候变化. 海洋地质与第四纪地质, 2001, 21(2): 31-35.]

文章导航

/