土壤碳蓄量

荒漠化重建地区土壤有机碳时空动态特征——以陕西省榆林市为例

展开
  • 1. 中国科学院地理科学与资源研究所,北京 100101;
    2. 中国科学院研究生院,北京 100039
程淑兰 (1977-),女,博士生。主要研究方向为陆地生态系统格局与过程。 E-mail: chengsl@igsnrr.ac.cn

收稿日期: 2003-10-30

  修回日期: 2004-03-11

  网络出版日期: 2004-07-25

基金资助

国际科技合作重点项目计划 (2001DFDF0004)

Temporal-spatial Dynamic Analysis of Soil Organic Carbon in Inversed Desertification Area: a case study in Yulin County, Shaanxi Province

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2003-10-30

  Revised date: 2004-03-11

  Online published: 2004-07-25

Supported by

International Key Project of Technological Cooperation, No.2001DFDF0004

摘要

以陕西省榆林市这一典型区为例探讨干旱、半干旱荒漠化重建地区SoC时空动态特征及其驱动因素。数据基础为1982年土壤普查和2003年重复采样。结果表明:(1) 在耕层 (0~20 cm)、1 m深 (0~100 cm) 和全剖面 (母质层以上整个土体) 等三个剖面层次上,土壤有机碳密度(SoCD)和储量(SoCS)时空动态分异明显,其中耕层最为显著。(2) 在区域水平上,耕层、1 m深和全剖面SoCS分别增加10.12 Gg、19.06 Gg和20.10 Gg,其中东南部丘陵沟壑区显著高于西北部风沙草滩区。(3) 在土类水平上,风沙土类中各土种SoCD及其变化悬殊,其中流动风沙土和半固定风沙土SoCD最低、增加量最小,固定风沙土初始SoCD最高、减少量最大;反之,黄绵土类中各土种SoCD较高,增加量显著。该研究证明植树造林种草、可持续农业耕垦等土地利用和管理方式的变更能显著提高荒漠化地区土壤固碳能力。

本文引用格式

程淑兰,欧阳华,牛海山,王琳,田玉强,张锋,高俊琴 . 荒漠化重建地区土壤有机碳时空动态特征——以陕西省榆林市为例[J]. 地理学报, 2004 , 59(4) : 505 -513 . DOI: 10.11821/xb200404003

Abstract

Soil organic carbon (SoC) is considered to be a key index in evaluation of soil quality, soil degradation and soil C sequestration. In order to discuss the temporal-spatial dynamics of SoC in reversed desertification area, Yulin County is taken as a case. Data of SoC were obtained based on the Second National Soil Survey in 1982 and re-sampling in 2003. Methods to soil sampling, SoC determination, soil organic carbon density (SoCD) and storage (SoCS) calculation are soil auger, K2Cr3O7 oxidation and FeSO4 titration and area-weighted mean values, respectively. On average, SoCD and SoCS and their changes vary between different soil groups, soil C pools and sub-areas. During 1982 and 2003, soil organic carbon density (SoCS) for arable layer (0-20 cm), 1-m depth (0-100 cm) and whole profile (100±10 cm) increase 0.15 kgm-2, 0.29 kgm-2 and 0.31 kgm-2 respectively, being equal to increments of SoCS of 10.12 Gg, 19.06 Gg and 20.10 Gg, correspondingly. As for soil C pools, arable layer is much more sensitive to climate change, land use/management and other human activities than 1-m depth and whole profile. With regard to soil group and sub-area, the change of SoCD of sandy soil distributed in the northwest is much less than that of loessal soil distributed in the southeast, thus per unit area SoCS in the northwest is lower than the southeast. As far as soil genus, the SoCD of moving sandy soil and semi-fixed sandy soil is significantly lower than that fixed sandy soil, and sandy loamy loessal soil is less than light loamy loessal soil, which indicate that there is great potential to increase SoC in the study area. These data demonstrate that afforestation, agroforestry, tillage of soil and water conservation, and other soil restoration countermeasures can enhance soil C sequestration and mitigate the atmospheric concentration of CO2.

参考文献


[1] Liu Yansui, Jay Gao. Trend analysis of land degradation in the zone along the Great Wall in northern Shaanxi. Acta Geographica Sinica, 2002, 57(4): 146-153.
[刘彦随, Jay Gao. 陕北长城沿线地区土地退化态势分析. 地理学报, 2002, 57(4): 443-450.]

[2] Lal R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences, 2003, (2): 151-184.

[3] Duan Z, Xiao H, Dong Z et al. Estimate of total CO2 output from desertified sandy land in China. Atmospheric Environment, 2001, 35: 5915-5921.

[4] Emanuel W R, Shugart H H, Stevenson M P. Climatic changes and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 1985, 7: 29-30.

[5] Feng Q, Endo K N, Cheng G D. Soil carbon in desertified land in relation to site characteristics. Geoderma, 2002, 106: 21-43.

[6] Squires V R. Dryland soils:their potential as a sink for carbon and as an agent in mitigating climate change. Advances in GeoEcology, 1998, 32: 209-215.

[7] Batjes N H. Options for increasing carbon sequestration in West African soils: an exploratory study with special foCus on Senegal. Land Degradation & Development, 2001, 12: 131-142.

[8] Pan Genxing, Li Lianqing, Zhang Xuhui et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands. Advance in Earth Sciences, 2003, 18(4): 609-618.
[潘根兴, 李恋卿, 张旭辉 等. 中国土壤有机碳库储量与农业土壤碳固定动态的若干问题. 地球科学进展, 2003, 18(4): 609-618.]

[9] Committee of Yulin County's Chorography. Chorography of Yulin Count. Yulin: Three Qin Press, 1996.
[榆林市志编篡委员会. 榆林市志. 榆林: 三秦出版社, 1996.]

[10] Liu Guangsong (ed.). Soil Physical and Chemical Analysis & Description of Soil Profiles. Beijing: China Standard Press, 1996. 30-32.
[刘光崧 主编. 土壤理化分析与剖面描述. 北京: 中国标准出版社, 1996. 30-32.]

[11] Haibin Wu, Zhengtang Guo, Changhui Peng. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 2003, 9: 305-315.

[12] Wang Shaoqing, Zhou Chenghu, Li Kerang et al. Analysis on spatial distribution of soil organic carbon reservoir in China. Acta Geographica Sinica, 2002, 55(5): 533-544.
[王绍强, 周成虎, 李克让 等. 中国土壤有机碳库及其空间分布特征分析. 地理学报, 2002, 55(5): 533-544.]

[13] Lal R, Follett R F. Managing US cropland to sequester carbon in soil. Journal of Soil and Water Conservation, 1999, (5): 374-381.

[14] Li Zhong, Sun Bo, Lin Xinxiong. Density of soil organic carbon and the factors controlling its turnover in East China. Scientia Geographica Sinica, 2001, 21(4): 301-307.
[李忠, 孙波, 林心雄. 我国东部土壤有机碳密度及转化的控制因素. 地理科学, 2001, 21(4): 301-307.]

[15] Jukka A, Leif S. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 1999, 80(1): 161-174.

[16] Huang Yao, Liu Shiliang, Shen Qirong et al. Influence of environmental factors on the decomposition of organic carbon in agricultural soils. Chinese Journal of Applied Ecology, 2002, 13(6): 709-714.
[黄耀, 刘世梁, 沈其荣 等. 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 2002, 13(6): 709-714.]

[17] Li Linghao. Effects of land use change on soil carbon storage in grassland ecosystems. Acta Phytoecologica Sinica, 1998, 22(4): 300-302.
[李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影响. 植物生态学报, 1998, 22(4): 300-302.]

[18] Xu Xianglan, Zhang Keli, Xu Xianli et al. Spatial distribution and estimating of soil organic carbon on Loess Plateau. Journal of Soil and Water Conservation, 2003, 17(3): 13-15.
[徐香兰, 张科利, 徐宪立 等. 黄土高原地区土壤有机碳储量及其分布规律研究. 水土保持学报, 2003, 17(3): 13-15.]

文章导航

/