干旱区环境

中国风蚀景观面积变化与 地表风场强度的关系

展开
  • 1. 中国科学院遥感应用研究所, 北京 100101;
    2. 中国科学院地理科学与资源研究所, 北京 100101
张国平 (1974- ), 男, 博士。从事资源、环境及生态遥感研究。E-mail: zhangguoping@cmmail.com

收稿日期: 2001-06-04

  修回日期: 2001-09-26

  网络出版日期: 2002-01-25

基金资助

中国科学院知识创新工程重大项目(KZCX1-Y-02),中国科学院学生创新基金。

Analysis of Wind Erosion Caused Landscape Change and Its Relation with Spatial Distribution of Wind Energy

Expand
  • 1. Institute of Remote Sensing Application, CAS, Beijing 100101, China;
    2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2001-06-04

  Revised date: 2001-09-26

  Online published: 2002-01-25

Supported by

Knowlege Innovetion Project of CAS, No. KZCX1-Y-02

摘要

利用遥感调查的1995~2000年中国土地利用成果进行中国风蚀景观变化过程的分类,对不同风蚀景观发展过程进行了地理分区。探讨风蚀景观变化的方向和速度,特别是土地发生风蚀沙漠化的趋势。在中国近400个气象站点1999年每日4次观测数据的基础上,进行风向频率、风场强度及风能参数的计算,分析风速频率Weibull分布的形状参数k和幅度参数c。利用GIS方法生成覆盖中国的1 km网格,对风场强度等数据进行空间化处理,生成中国地表风速空间分布数据。在此基础上,分析1999年风速变化状况并探讨风场的变化过程。利用RWEQ 风蚀预报模型中的计算方法生成了的风场强度指数。结合风场强度数据,进行风蚀区内风蚀景观变化类型分布数据的对比,指出强风场的存在促使中国西北广大干旱区的草地和耕地遭到破坏,并探讨了风能对土壤风力侵蚀和风蚀景观的驱动过程。同时,在分析风能与风蚀景观空间分布关系的基础上探讨了降低土壤风蚀的措施。最后指出了建立风速和风向驱动下的不同景观的土壤颗粒侵蚀和堆积量模型的重要性。

本文引用格式

张国平,刘纪远,张增祥,赵晓丽,周全斌 . 中国风蚀景观面积变化与 地表风场强度的关系[J]. 地理学报, 2002 , 57(1) : 1 -10 . DOI: 10.11821/xb200201001

Abstract

Based on the results of the remote sensing investigations of the land-use and land-cover of 1995 and 2000, the national distribution of sandy desertified land and its interaction with other landscapes are classified, and five zonal types are distinguished. In arid and semi-arid areas of China, the intensity of wind field is one of the key factors that control the development of landscape especially in desert and its adjacent area. To better understand the spatial distribution of wind erosion landscapes as well as their dynamic changes, essential work is needed to expose the spatialy distribution of wind field and its changes. In the paper, the data of nationally distributed 400 meteorological stations of 1999 are processed. With the GIS method, the data are spatially interpolated, and the national database of wind field concerned with wind erosion is established. Wind speed and its duration are one of the most important factors that control wind erosion of soil. When the friction speed is satisfied, wind erosion occurs. Different indexes are set up to describe the intensity of wind field, such as the number of days that their daily average wind speed exceeds the value of threshold speed and the number of records that their speed surpass the threshold speed. The method suggested by the wind erosion prediction models of RWEQ is also adopted to express the intensity of wind. The results are compared, and the distribution of wind field in China is discussed. The relation of the distribution of landscape and wind field is then discussed indicating the strong wind field in Northwest China as a most important factor that causes serious landscape change especially to the diminishing of the grassland and contrarily the expansion of the sandy desertified land.

参考文献


[1] Forman R T, Godron M. Landscape Ecology. New York, 1986. 315-317.

[2] Liu Tungsheng. Loess and Environment. Beijing: China Ocean Press, 1985. 1-237.

[3] Zhang Guoping, Zhang Zengxiang, Liu Jiyuan. Spatial distribution of aeolian erosion of soil and its driving factors in China. Acta Geographica Sinica, 2001, 56(2): 146-158.
[张国平, 张增祥, 刘纪远. 中国土壤风力侵蚀空间格局及驱动因子分析. 地理学报, 2001, 56(2): 146-158.]

[4] Qiu Xinfa, Zengyan, Miao Qinlong. Temporal-spatial distribution as well as tracks and source areas of sand-dust storm in China. Acta Geographica Sinia, 2001, 57(3).

[5] Skidmore E L, Tatarko, Wagner. Climate databases for wind erosion prediction models. In Richardson C W, Hohnson G L, Ferreira V A, Doraiswamy P C (eds.) Proc. Workshop on Climate and Weather Research, Denver, CO. 1999, July 17-19.

[6] Skidmore E L. Assessing wind erosion forces: directions and relative magnitudes. Soil Sci. Soc. Am. Proc., 1965, 29(5): 587-590.

[7] Nfaoui H, Buret J, Sayigh A M. Wind characteristics and wind energy potential in Morocco. Solar Energy, 1998, 63(1): 51-60.

[8] Abdulla H. Algifri. Wind energy potential in Aden-Yemen. Renewable Energy, 1998, 13: 255-260.

[9] Merzouk N K. Wind energy potential of Algeria. Renewable Energy, 2000, 21: 553-562.

[10] Persaud S, Flynn D, Fox B. Potential for wind generation on the Guyana coastlands. Renewable Energy, 1999, 18: 175-189.

[11] Skidmore E L, Tatarko J. Stochastic wind simulation for erosion modeling. Trans. ASAE, 1990, 33(6): 1893~1899.

[12] Stevens M J, Smulders. The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng., 1979, 3(2): 132-145.

[13] Seguro J V, Lambert T W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering, 2000, 85: 75-84.

[14] Torres J L, Garcia A, Prieto E et al. Characterization of wind speed data according to wind direction. Solar Energy, 1999, 66(1): 57-64.

[15] Garacia A, Torres J L, Prieto E, De Francisco A. Fitting wind speed distributions: a case study. Solar Energy, 1997, 62(2): 139-144.

[16] Zhang Guoping, Zhang Zengxiang, Liu Jiyuan. Spatial distribution of national wind soil erosion and its driving factors. Journal of Geographical Sciences, 2001, 11(2): 127-139.

[17] Bagnold, R M. The physics of blown sand and desert dunes. London Methuen and Co. Ltd: 1954. 265.

[18] Chepil W S. Dynamics of wind erosion. Soil Science, 1945, 60: 475-480.

[19] Fearnehough W, Fullen M A, Mitchell D J et al. Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China. Geomorphology, 1998, 23: 171-182.

[20] Dong Zhibao, Gao Shangyu, Dong Guangrong. A review of wind erosion prediction research. Journal of Desert Research, 1999, 19(4).
[董治宝, 高尚玉, 董光荣. 土壤风蚀预报研究述评. 中国沙漠, 1999, 19(4).]

文章导航

/