论文

湘桂黔滇藏红色岩溶风化壳发育模式

展开
  • 1. 南京大学城市与资源学系, 南京 210093;
    2. 北京大学城市与环境学系, 北京 100871
李德文 (1969-), 博士后, 地貌与第四纪地质专业, 主要从事气候地貌学及相关领域的研究。 E-mail:lidewen@263.net

收稿日期: 2001-06-04

  修回日期: 2001-09-26

  网络出版日期: 2002-05-25

基金资助

国家重点基础研究发展规划(G1998040800);中科院青藏高原研究项目 (KZ951-A1-204; KZ95T-06) 及中国博士后科学基金

A Development Model of Red Weathering Crust on Limestones: an Example from Hunan, Guangxi, Guizhou, Yunnan and Tibet

Expand
  • 1. Department of Geography, Nanjing University, Nanjing 210093, China;
    2. Department of Geography, Peking University, Beijing 100871, China

Received date: 2001-06-04

  Revised date: 2001-09-26

  Online published: 2002-05-25

Supported by

National Key Project for Basic Research, No.G1998040800); CAS Project for Tibetan Research, No.KZ951-A1-204; No.KZ95T-06; China Postdoctoral Science Foundation

摘要

基于对湘、桂、黔、滇、藏等地岩溶区红色风化壳的野外和室内研究, 从表生地貌学、粘土矿物学和地球化学的角度分析红色石灰土性质与地貌演化的关系, 提出红色岩溶风化壳发育的二阶段模式: 1) 地貌夷平-风化物质积累阶段,在地貌演化过程中溶蚀残余物质不断积累, 最后在夷平面上形成厚层连续的泥质风化壳。夷平面的地貌水文条件有利于粘粒的形成和保存, 但限制了富铝化作用的有效进行, 造就了岩溶风化壳粘粒含量高、富铝化程度低的特点。这与研究区23个红色岩溶风化壳剖面化学、粒度特征和粘土矿物组合特点是一致的。 2) 地貌切割-风化壳淋溶阶段,原始夷平面上的风化壳大多呈灰色。只有在构造隆升和地表微切割导致地下水位降低、淋溶条件开始改善的情况下, 风化壳才有可能从根本上转为红色。

本文引用格式

李德文,崔之久,刘耕年 . 湘桂黔滇藏红色岩溶风化壳发育模式[J]. 地理学报, 2002 , 57(3) : 293 -300 . DOI: 10.11821/xb200203005

Abstract

Based on research results of red weathering curst on limestones (WCL) in Hunan, Guangxi, Guizhou, Yunnan and Tibet, the authors analysed the relationship of red WCL and evolution of landforms using principles of geomorphology, clay mineralogy and geochemistry, and put forward a two-stage development model. Firstly, insoluble residual of carbonates have been cumulated in the later stage of geographical cycle and WCL was formed on planation surface (PS). This is called stage of lowering of landform and accumulation of residual or stage of planation and crustal formation. The gentle relief and backwater, derived from PS (in humid tropical), is available for the formation and preservation of clays (argilication), but restricts WCL to effective allitication. This accords with the characters of WCL in the study areas (including chemical composition and mineralogical assemblage of clays and granularity of 23 profiles). The second stage of the above model is incision of landform and allitication of WCL or incision-erubescence. The initial WCL located on PS is mainly gray due to reductive circumstance. WCL will have changed from gray (reductive) to red (oxidative) if only tectonic uplift and incision of rivers lower groundwater table, and geomorphologic and hydrogeological (hydrological) conditions have promoted to allitication. This is confirmed using material of field investigations. The WCL on the initial PS, such as Hunan and Guangxi, is mainly gray-color and those on the uplifted plateau, such as Yunnan-Guizhou and Tibetan plateaus, is red. In addition, red WCL is spatially located on PS.

参考文献


[1] Cui Zhijiu, Li Dewen, Wu Yongqiu et al. Comment on planation surface. Chinese Sci. Bull., 1999, 44(22): 2017-2022
[崔之久, 李德文, 伍永秋 等. 关于夷平面. 科学通报, 1998, 43(17): 1794-1804.]

[2] Cui Zhijiu, Li Dewen, Feng Jinliang et al. Feature of red karst weanthering crust and formation environment of planation surface in Hunan, Guangxi, Guizhou, Yunnan and Tibet. Sci. China (D), 2001, 44(suppl.1).
[崔之久, 李德文, 冯金良 等. 湘桂黔滇藏红色岩溶风化壳的性质与夷平面形成环境. 中国科学(D), 2001, 31(增刊).]

[3] Барышников Г Я. Древнние поверхрости выровнивание и корообразовательные процессы на территории Горного Алтая. Геоморфология, 1989, (1): 57-61.

[4] Селиверстов Ю П. Проблемы гепергенной геоморфология. Л:Изд-во Ленинград Ун-ма, 1986.

[5] Cui Zhijiu, Gao Quanzhou, Liu Gengnian et al. Planation surface, palaeokarst and uplift of Xizang (Tibet) Plateau. Sci. China (D). 1996, 39(4): 391-396.
[崔之久, 高全洲, 刘耕年 等. 古岩溶、夷平面与高原隆升. 中国科学(D), 1996, 26(4): 378-385.]

[6] Cui Zhijiu, Li Dewen, Liu Gengnian et al. Covered karst, weathering crust and karst planation surface (of double levels). Sci. China (D), 2002, 45.
[崔之久, 李德文, 刘耕年 等. 覆盖型岩溶、风化壳与岩溶(双层)夷平面. 中国科学(D), 2001, 31(6): 510-519.]

[7] Li Dewen, Cui Zhijiu, Liu Gengnian. Existence of palaeokarst on Tibet Plateau and its correlation with the karst of the eastern district. Carsologica Sinica, 1999, 18(4): 309-409.
[李德文, 崔之久, 刘耕年. 青藏高原古岩溶的存在及其与东邻地区岩溶的对比. 中国岩溶, 1999, 18(4): 309-409.]

[8] Huang Zhenguo. Red Weatnering Crust in Southern China. Beijing: Ocean Press, 1996. 1-56.
[黄镇国. 中国南方红色风化壳. 北京: 海洋出版社, 1996. 1-56.]

[9] Li Dewen, Cui Zhijiu, Liu Gengnian. Features and origin of covered karst on Hunan, Guangxi, Guizhou, Yunnan and Tibet. Journal of Mountain Science, 2000, 18(4): 289-295.
[李德文, 崔之久, 刘耕年. 湘桂黔滇藏一线覆盖型岩溶地貌特征与岩溶双层夷平面. 山地学报, 2000, 18(4): 289-295.]

[10] Jenny H. The Soil Resource: Origin and Behavior. Springer-Verlag, 1983.

[11] Smith B J, McAlister J J. Mineralogy, chemistry and palaeoenvironmental significance of an early Tertiary terra rossa from northern Ireland: a preliminary review. Geomorphology, 1995, (12): 63-73.

[12] Guo Jingtang, Ouyang Jing. The Profile Atlas of Chinese Soils. Beijing: China Science and Technology Press, 1991. 52.
[郭景唐, 欧阳菁. 中国土壤剖面图谱. 北京: 中国科技出版社, 1991. 52.]

[13] Yu Tianren, Wang Zhenquan. Soil Analysis Chemistry. Beijing: Science Press, 1988.
[于天仁, 王振权. 土壤分析化学. 北京: 科学出版社, 1988.]

[14] Jenny H. The Factors of Soil Formation. New York: McGraw-Hill, 1941.

[15] Li Qingkui, Xiong Yi (eds.). Soils in China (2nd edn.). Beijing: Science Press, 1987.
[李庆逵, 熊毅 主编. 中国土壤(第二版). 北京: 科学出版社, 1987.]

[16] Huang Peihua. Neotectonic features of Yunnan and its relationship with regional tectonics. Journal of Nanjing University (Natural Science), 1958, (7): 51-64.
[黄培华. 云南新构造运动特点与大地构造关系. 南京大学学报(自然科学版), 1958, (7): 51-64.]

[17] Lin Junshu. Origin of stone pinnacles and environmental change in Lunan, Yunnan, China. Carsologica Sinica, 1997, 16(4): 346-350.
[林均枢. 路南石林形成过程与环境变化. 中国岩溶, 1997, 16(4):346-350.]

[18] Wang Shijie, Ji Hongbing, Ouyang Ziyuan et al. Preliminary study on weathering and pedogenesis of carbonate rock. Sci. China (D), 1999, 42(6): 572-581.
[王世杰, 季红兵, 欧阳自远 等. 碳酸盐岩风化成土作用的初步研究. 中国科学(D), 1999, 29(5): 441-449.]

[19] Лапин А В. Редкие земли в корвх выветривания карбонатитов: особенности распределения фракционирование минеральные формы. Геохимия, 1994, (3): 342-357.

[20] Лапин А В. Дифференциалная подвижность компонентов в зоне гипергенеза как ведущий фактор формирования месторождений кор выветривания карбонатитов. Геохимия, 1995, (7): 933-949.

[21] Zonn S V. Tropical and Subtropical Soil Science. Moscow: Mir Publishers, 1986. 243-247.

[22] Right D, Meunier A. Origin of clays by rock weathering and soil formation. In: Velde B (eds), Origin and Mineralogy of Clays. Berlin, Heidelberg: Springer-Verlag, 1995. 43-161.

[23] Zhao Lunshan, Zhang Benren. Geochemistry. Beijing: Geological Press, 1988. 225-226.
[赵伦山, 张本仁. 地球化学. 北京: 地质出版社, 1988. 225-226.]

[24] Sherman G D, Ikawa H. Soil sequences in the Hawaiian Islands. Pacific Science, 1968, 22(4): 458-464.

[25] Wei Qipan, Chen Hongming, Wu Zhidong et al. Geochemical features of terra rossa in Longgang Nature Reserve, Guangxi, China. Acta Pedologica Sinica, 1983, 20(1): 30-41.
[韦启蹯, 陈鸿鸣, 吴志东 等. 广西弄岗自然保护区石灰土的地球化学特征. 土壤学报, 1983, 20(1): 30-41.]

[26] Curtis L F, Courtney F M, Trudgill S. Soil in the British Isles. London: Longman Group Limited, 1976. 88-109.

[27] Trudgill S T. Limestone Geomorphology. New York: Longman Inc., 1985.

[28] Li Dewen, Cui Zhijiu, Liu Gengnian et al. Formation and evolution of karst weathering crust on limestone and its cyclic significance. Carsologica Sinica, 2001, 20(3): 183-188.
[李德文, 崔之久, 刘耕年 等. 岩溶风化壳形成演化及其循环意义. 中国岩溶, 2001, 20(3):183-188.]

[29] Twidale C R. The two-stage concept of landform and landscape development involving etching: origin, development and implications of an idea. Earth-Science Reviews, 2002, 57(1-2): 37-74.

文章导航

/