研究综述

SRM融雪径流模型在长江源区冬克玛底河流域的应用

展开
  • 中国科学院寒区旱区环境与工程研究所,兰州 730000
刘俊峰 (1982-), 男, 硕士生, 宁夏中卫人, 主要从事寒区水文过程研究。E-mail: jfliu121@163.com

收稿日期: 2006-04-15

  修回日期: 2006-09-19

  网络出版日期: 2006-11-25

基金资助

国家自然科学基金资助项目 (40301010; 40371026); 中国科学院重要方向性项目 (KZCX3-SW-345) 资助

The Simulation of Snowmelt Runoff Model in the Dongkemadi River Basin, Headwater of the Yangtze River

Expand
  • Cold and Arid Regions Environmental Engineering Research Institute, CAS, Lanzhou 730000, China

Received date: 2006-04-15

  Revised date: 2006-09-19

  Online published: 2006-11-25

Supported by

National Natural Science Foundation of China, No.40301010; No.40371026; Knowledge Innovation Project of CAS, No.KZCX3-SW-345

摘要

冬克玛底河流域作为青藏高原腹地长江源区典型代表性高寒山区流域,有较大面积的冰川、积雪存在。本文以冬克玛底河流域2005年5~10月的实测水文、气象资料为基础,运用SRM融雪径流模型对不同分带数对融雪径流模拟效果的影响和不同测站气温分别作为气温驱动变量对融雪径流模拟效果的影响分别进行了模拟试验。结果表明:不同分带会对SRM模型融雪径流量模拟产生一定的影响;而不同的气温作为驱动变量对模拟的效果影响很大,这表明SRM模型对气温驱动变量非常敏感。同样根据流域内径流与气温降水的相关分析看到日径流量与气温相关性较好,线性相关系数最好达到0.72,而径流与降水线性相关系数为0.20。根据以上模拟实验和相关分析选择合适的分带和具有代表性的站点气温,SRM模型模拟的两个优度指标最好可达到Nash-Sutcliffe 系数 (R2) = 0.83和体积差 (Dv) = 0.95%。 考虑到SRM 模型对气温的敏感性,利用最终选择的模拟方案并结合气温升高1 oC气候情景假设来考虑气温、降水和径流之间的关系。模拟结果表明:气温升高1 oC后,(1) 模拟时期内的径流总量由原来模拟的25.5 × 106 m3增加到33 × 106 m3;(2) 冰川物质平衡线从原来的 5600上升到5750米,冰川消融区从5.8 km2增大到13.5 km2,冰川消融量增加,对径流量的贡献明显增大。(3) 气温的升高加速积雪融化并改变降水形态是径流在5~6月变大的主导因素。7~10月份的径流变大则主要是由于冰川消融。

本文引用格式

刘俊峰,杨建平,陈仁升,阳勇 . SRM融雪径流模型在长江源区冬克玛底河流域的应用[J]. 地理学报, 2006 , 61(11) : 1149 -1159 . DOI: 10.11821/xb200611004

Abstract

As the representation of the typical river basin of headwater of the Yangtze River, Tibetan Plateau, Dongkemadi River Basin has glacier and snow accumulation. This paper uses the Snowmelt Runoff Model to simulate effects of different divisions of Dongkemadi River Basin to the hydrological process and simulate temperature at different stations as the driving factor to the effects of hydrological simulation, based on the hydrological data and meteorological data observed from May to October in 2005. According to the simulations, a final simulation scheme is selected as the final decision. The simulation result of different divisions of Dongkemadi River Basin shows its effect to the simulation. Simulation using different temperatures as driving factor shows that the SRM model is very sensitive to the effects of different temperatures. The correlation analysis shows that the correlation between runoff and air temperature is relatively good with best linear correlation coefficient reaching 0.72, but it can only reach 0.20 between runoff and precipitation. Based on the simulation and correlation analysis, the appropriate division and representative air temperature are selected to simulate the Dongkemadi River Basin's hydrological process. The coefficient of Nash Sutcliffe (R2) is 0.83 and the volume difference of streamflow is 0.95%. Considering the sensitivity of the SRM model to air temperature, we simulated the relationship among air temperature, precipitation and runoff when the temperature rises by 1oC. The simulation result shows that: (1) The total amount of streamflow in the simulation period changed from 25.5 × 106 m3 to 33 × 106 m3; (2) The glacial mass balance line ascended from 5600 m to 5750 m and the area of ablation in Dongkemadi enlarged from 5.8 km2 to 13.5 km2, so that the contribution of the streamflow from glacial ablation is much greater; (3) because of the rise of air temperature, the speedup of snowmelt and the change of precipitation state are the main reasons of the runoff increase from May to June. The rise of runoff from July to October is mainly caused by the melting of glacier.

参考文献


[1] Barnett T P, Dumenil L, Latif M et al. The effect of Eurasian snow cover on regional and global climate variations. Journal of the Atmospheric Science, 1989, 46(5): 661-685.

[2] Wei Zhigang, Huang Ronghui, Chen Wen et al. Spatial distribution and interannual variations of the snow at the Tibetan Plateau weather stations. Chinese Journal of Atmospheric Sciences, 2002, 26(4): 496-508.
[韦志刚, 黄荣辉, 陈文 等. 青藏高原地面站积雪的空间分布和年代际变化特征. 大气科学, 2002, 26(4): 496-508]

[3] Pu Jianchen. Glacier Inventory of China VIII: The Yangtze River Drainage Basin. Lanzhou: Gansu Culture Press, 1994. 1-81.
[蒲健辰. 中国冰川目录VIII: 长江水系. 兰州: 甘肃文化出版社, 1994. 1-81.]

[4] Zhang Yinsheng, Yao Tandong et al. The features of hydrological processes in the Dongkemadi River Basin, Tanggula Pass, Tibetan Plateau. Journal of Glaciology and Geocryology, 1997, 19(3): 214-222.
[张寅生, 姚檀栋 等. 青藏高原唐古拉冬克玛底河流域水文过程特征分析. 冰川冻土, 1997, 19(3): 214-222.]

[5] George A, Riggs Dorothy K, Hall Vincent V Salomonson. MODIS Snow Products User Guide for Collection 4 Data Products. January 2003. 33-41. Http://modis-snow-ice.gsfc.nasa.gov/sugkc2.html

[6] Becker A, Serban P. Hydrological Models for Water-Resources System Design and Operation, Operational Hydrological Report No.34. Geneva: WMO, 1990.

[7] Martinec J, Rango A, Roberts R. The Snowmelt Runoff Model (SRM) User's Manual (Updated Edition 1998, Version 4.0). Berne: University of Berne, 1998. 7-30, 45-57.

[8] Martinec J, Rango A. Parameter values for snowmelt runoff modeling. Journal of Hydrology, 1986, 84: 197-219.

[9] Ma Hong, Cheng Guodong. Snowmelt runoff simulation in Gongnaisi River Basin by the using of SRM. Chinese Science Bulletin, 2003, 48(19): 2088-2093.
[马虹, 程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用试验. 科学通报, 2003, 48(19): 2088-2093.]

[10] Nash L L, Gleick P H. The sensitivity of streamflow in the Calorado Basin to climate change. Journal of Hydrology, 1993, 125: 221-241.

[11] Pu Jianchen, Yao Tandong. Study of Mass Balance in a Branch of Dongkemadi Glacier. In: Glacier, Climate and Environment in Tibetan Plateau. Beijing: Science Press, 1993. 60-68.
[浦健辰, 姚檀栋. 冬克玛底支冰川物质平衡研究. 青藏高原冰川气候与环境. 北京: 科学出版社, 1993. 60-68.]

文章导航

/