陆地水文

赣江上游河流水化学的影响因素及DIC 来源

展开
  • 首都师范大学资源环境与旅游学院资源环境与GIS 北京市重点实验室, 北京100037
李甜甜(1982-), 女, 山东泰安人, 硕士生, 研究方向:环境生物地球化学。E-mail: tiantian7330891@sohu.com

收稿日期: 2007-02-01

  修回日期: 2007-04-19

  网络出版日期: 2007-07-25

基金资助

国家自然科学基金项目(40473051)

Hydro- geochemistry and the Sour ces of DIC in the Upr iver Tr ibutar ies of the Ganjiang River

Expand
  • The Key Lab of Resource Environment and GIS, College of Environmental Resource and Tourism, Capital Normal University, Beijing 100037, China

Received date: 2007-02-01

  Revised date: 2007-04-19

  Online published: 2007-07-25

Supported by

National Natural Science Foundation of China, No.40473051

摘要

对赣江上游38 处水体采样点的水化学特征和溶解无机碳稳定同位素的分析, 发现其总溶解质浓度较低, 其中, 阳离子以Na+、Ca2+ 为主, 阴离子以Cl- 和HCO3 - 为主, Si 的浓度较高, 表征了典型硅酸盐地区河流的水化学组成特征。通过海盐校正分析得出, 研究区大气降水对河水溶解质的贡献率为11.5%, 扣除降水的贡献部分, 利用主成分分析的方法, 计算得出赣南流域受硅酸盐岩风化作用强烈, 同时由于受附近盐矿的影响, 蒸发盐岩的风化作用显著。另外, 根据δ13C 溶解无机碳DIC 的测量值约为-8.35‰~-13.74‰, 平均为-11.65‰, 利用质量平衡计算得出, 研究区DIC 的主要来源, 约68.5%来自于土壤CO2, 31.5%来自于碳酸盐矿物的溶解, 进而得出流域岩石化学风化过程消耗的土壤CO2 为2.11×105 mol/yr·km2, 来自碳酸盐本身的HCO3 -含量为9.6×104 mol/yr·km2。由于地理位置和流域环境以及人为因素的差异, 各支流DIC 来源的比例亦有所差异。

本文引用格式

李甜甜, 季宏兵, 江用彬, 王丽新 . 赣江上游河流水化学的影响因素及DIC 来源[J]. 地理学报, 2007 , 62(7) : 764 -775 . DOI: 10.11821/xb200707009

Abstract

Testing and analyzing the samples collected from the upriver tributaries of Ganjiang, we found that the river and its tributaries have low total dissolved solids concentrations and the chemical composition of river water is dominated by Na+, Ca2+, Cl-,HCO3- and Si, representing that of the river water from the typical silicate rock areas. Seawater correction approach (Cl- normalized seawater ratios) was used to estimate the contribution proportions of local precipitation to the solutes, we found that most watersheds of southern Jiangxi province were evidently influenced by precipitation. After the contributions of precipitation deducted from the total dissolved solids, on the basis of the principal composition analysis and factor analysis, the watersheds of Ganjiang were influenced strongly by silicate weathering. At the same time, the watersheds are evidently influenced by evaporates under the influence of the mineral resources. In this paper, the upriver tributaries of Ganjiang were selected for analyzing the dissolved inorganic carbon isotope composition of it. It has δ13CDIC of -8.35 to -13.74‰, with an average of -11.65‰. The key source of DIC is soil CO2 and carbonate weathering. According to carbon isotopic composition of soil CO2 and carbonate rock, 68.5% of the DIC is calculated to originate from soil CO2, respectively, and 31.5% of the DIC is calculated to originate from carbon rock. The soil CO2 consumption of chemical weathering processes is 2.11 ×105 mol/yr·km2, and about 9.6 ×104 mol/yr·km2 is from carbonate. At the same time, the tributaries have different δ13CDIC values each because of different environments and the human interference.

参考文献


[1] Han Guilin, Liu Congqiang. Hydrogeochemistry of rivers in Guizhou province, China: Constraints on crustal weathering in karst terrain. Advances in Earth Science, 2005, 20(4): 394-406.
[韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究: 碳 酸盐岩溶解控制的水文地球化学特征. 地理科学进展, 2005, 20(4): 394-406.]

[2] Le Jiaxiang, Wang Dechun. Chemical characteristics of river water in China. Acta Geographica Sinica, 1963, 29(I): 2-12.
[乐嘉祥, 王德春. 中国河流水化学特征. 地理学报, 1963, 29(I): 2-12.]

[3] Zhang Licheng, Zhao Guijiu, Dong Wenjiang et al. Geochemical characteristics of the Xiangjiang river system. Acta Geographica Sinica, 1987, 42(3): 243-251.
[张立成, 赵桂久, 董文江等. 湘江水系河水的地球化学特征. 地理学报, 1987, 42(3): 243-251.]

[4] Zhang Licheng, Dong Wenjiang, Wang Liping. The geochemical characteristics of the water in the Changjiang river system. Acta Geographica Sinica, 1992, 47(3): 220-232.
[张立成, 董文江, 王李平. 长江水系河水的地球化学特征. 地 理学报, 1992, 47(3): 220-232.]

[5] Chen Jingsheng, Li Yuanhui. Effect of physical chemistry corrosion to rivers in China. Chinese Science Bulletin, 1984, (IS): 932-936.
[陈静生, 李远辉. 我国河流的物理与化学侵蚀作用. 科学通报, 1984, (IS): 932-936.]

[6] Chen Jingsheng, He Dawei. Chemical characteristics and genesis of major ions in the Pearl River basin. Acta Scicentiarum Naturalum Universitis Pekinesis, 1999, 35: 786-793.
[陈静生, 何大伟. 珠江水系河水主要离子化学特征 及成因. 北京大学学报, 1999, 35: 786-793.]

[7] Chen Jingsheng, Hong Song, Wang Lixin et al. Geo-chemical parameters of river particulate in eastern China. Acta Geographica Sinica, 2000, 55(4): 417-427.
[陈静生, 洪松, 王立新等. 中国东部河流颗粒物的地球化学性质. 地理学 报, 2000, 55(4): 417-427.]

[8] Gao Quanzhou, Shen Chengde, Sun Yanmin et al. A preliminary study on the organic carbon weathering fluxes in Beijiang river drainage. Chinese Journal of Environmental Science, 2001, 22: 12-18.
[高全洲, 沈承德, 孙彦敏等. 北江流域有机碳侵蚀通量的初步研究. 环境科学, 2001, 22: 12-18.]

[9] Gao Quanzhou, Shen Chengde. The organic carbon weathering fluxes in Xijiang river basinage. Acta Sedimentologica Sinica, 2000, 18: 539-645.
[高全洲, 沈承德. 西江流域的有机碳侵蚀通量. 沉积学报, 2000, 18: 539-645.]

[10] Li Siliang, Liu Congqiang, Tao Faxiang et al. Chemical and stable carbon isotopic compositions of the ground waters of Guiyang City, China: Implications for biogeochemical cycle of carbon and contamination. Geochimica, 2004, 33(2): 165-170.
[李思亮, 刘丛强, 陶发祥等. 碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应 用. 地球化学, 2004, 33(2): 165-170.]

[11] Telmer K, Veizer J. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: Carbon isotope perspectives. Chemical Geology, 1999, 159: 61-86.

[12] Anne A, Simon M F et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system. Chemical Geology, 1999, 159: 87-105.

[13] Amiotte Suchet P, Aubert D et al. !13C pattern of dissolved inorganic carbon in a small granitic catchment: The Strengbach case study (Vosges mountains, France). Chemical Geology, 1999, 159: 129-145.

[14] Yang C, Telmer K, Veizer J. Chemical dynamics of the 'St. Lawrence' riverine system: "DH2O, #18OH2O, $13CDIC, %d34S sulfate, and dissolved 87Sr/86Sr. Geochimica et Cosmochimica Acta, 1996, 60: 851-866.

[15] Paces T. Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochimica et Cosmochimica Acta, 1983, 47: 1855-1863.

[16] Han Shaolin, Yang Xiaoming. DO and COD feature analysis in main river stage of Ganzhou city. Jiangxi Hydraulic Science & Technology, 1996, 27: 112-114.
[韩绍琳, 杨晓明. 赣州市主要河段溶解氧、耗氧量特性分析. 江西水利 科技, 1996, 27: 112-114.]

[17] Han Guilin. Characterization of natural and anthropogenic processes responsible for karst environmental quality changes. Institute of Geochemistry, Chinese Academy of Sciences, 2002.
[韩贵琳. 喀斯特环境质量变化的自然与人 文过程特征. 中国科学院地球化学研究所博士论文, 2002.]

[18] Chen Jingsheng, Xia Xinghui, Cai Xuyi. Evolution trend and analysis of major ion contents in the mainstream and some tributaries of Yangtse River in Sichuan and Guizhou provinces. China Environmental Science, 1998, 18: 131-135.
[陈静生, 夏兴辉, 蔡绪贻. 川贵地区长江干支流河水主要离子含量变化趋势及分析. 中国环境科学, 1998, 18: 131-135.]

[19] Xu Zhifang. Geochemistry of dissolved and suspended loads of the Xijiang River, China. Institute of Geology and Geophysics, Chinese Academy of Sciences, 2002.
[徐志方. 西江流域环境河水地球化学研究. 中国科学院地质与地 球物理研究所博士论文, 2002.]

[20] Stallard R F, Edmond J M. Geochemistry of the Amazon-2: The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 1983, 88(C14): 9671-9688.

[21] Lu Yurong. The Water Environment of Earth. Nanjing: Nanjing University Press, 2001. 62-670.
[陆渝蓉. 地球水环境 学. 南京: 南京大学出版社, 2001. 62-670.]

[22] Yao Xiaohong, Huang Meiyuan, Gao Huiwang et al. The mechanism of reaction between sea salt with atmospheric pollutants to acidify rainwater in coastal area. Chinese Journal of Enviromental Science, 1998, 17(4): 320-325.
[ 姚小 红, 黄美元, 高会旺等. 沿海地区海盐和大气污染物反应的致酸作用. 环境科学, 1998, 17(4): 320-325.]

[23] Meybeck M. Atmospheric inputs and river transport of dissolved substances. Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships. Proceedings of the Humburg Symposium: IAHS Publ, 1983, 173-191.

[24] Grosbois C, Negrel P, Grimaud D et al. An overview of dissolved and suspended matter fluxes in the Loire River Basin: Natural and anthropogenic inputs. Aquatic Geochemistry, 2001, 7: 81-105.

[25] Li Jingying, Zhang Jing. Weathering of watershed basins and global climatic change. Advance in Earth Sciences, 2002, 17: 411-419.
[李晶莹, 张经. 流域盆地的风化作用与全球气候变化. 地球科学进展, 2002, 17: 411-419.]

[26] Gaillardet J, Dupre B, Louvat P et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol., 1999, 159: 3-30.

[27] Sun Yuanyuan. A study on the hydro-geochemical characteristics, the major weathering processes and the atmospheric CO2 consumption budget for the small watersheds in the subtropical zone. The Capital Normal University, 2006.
[孙媛 媛. 亚热带小流域水文地球化学特征及风化过程中CO2 的消耗. 首都师范大学硕士论文, 2006.]

[28] Drever J I. The Geochemistry of Natural Waters. Englewood Cliffs, NJ: Prentice-Hall, 1988. 48-75.

[29] Stumm W, Morgan J J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters. Toronto: Wiley, 1996. 148-251.

[30] Cerling T E. On the isotopic composition of carbon in soil carbon dioxide. Cosmochim. Acta, 1991, 55: 3403-3405.

[31] Dorr H, Munnich K O. Carbon-14 and carbon-13 in soil CO2. Radiocarbon, 1980, 22: 909-918.

[32] Craig H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol.,1954, 62: 115-149.

[33] Brand U, Terasmae J. Source rock geochemistry of Pleistocene tills of Southern Ontario. Ont. Geol. Survey Misc. Pap., 1984, 121: 65-71.

[34] Xu Weicheng, Bai Xue. Analysis of sand content variance trend of rivers on the upstream of the Ganjiang River. Jiangxi Hydraulic Science & Technology, 2001, 27: 242-249.
[徐伟成, 白雪. 赣江上游河流含沙量变化趋势分析. 江 西水利科技, 2001, 27: 242-249.]

文章导航

/