环境化学

塔里木河下游间歇性输水对土壤水化学的影响

展开
  • 1. 中国科学院绿洲与荒漠环境重点实验室,乌鲁木齐830011;
    2. 中国科学院新疆生态与地理研究所, 乌鲁木齐830011;
    3. 聊城大学环境与规划学院,聊城252059;
    4. 新疆农业大学资源与环境学院, 乌鲁木齐830052
陈永金(1968-), 男,山东省苍山县人, 中国地理学会会员, 主要从事水质保护与生态保育研究。E-mail: yongjinchen2004@yahoo.com.cn

收稿日期: 2007-03-25

  修回日期: 2007-06-21

  网络出版日期: 2007-09-25

基金资助

中国科学院知识创新项目(KZCX2-YW-127; KZCX-XB2-03); 国家自然科学基金(90520004; 3050081) 资助.

Influence of Intermittent Water Deliveries on the Hydrochemistry of Soil in the Lower Tar im River

Expand
  • 1. Key Laboratry of Oasis Ecology and Desert Environment, Institute of Ecology and Geography, CAS, Urumqi 830011, China;
    2. Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China;
    3. School of Environment and Planning, Liaocheng University, Liaocheng 252059, Shandong, China;
    4. College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China

Received date: 2007-03-25

  Revised date: 2007-06-21

  Online published: 2007-09-25

Supported by

Knoledge Innovation Project of the Chinese Academy of Sciences, No.KZCX2-YW-127; KZCX-XB2-03); National Natural Science Foundation of China, No.90502004; No.30500081

摘要

根据塔里木河下游2000-2006 年11 次间歇性输水影响下沿输水河道两侧地下水埋深、地下水化学组分变化的资料, 结合有关输水的基本资料和土壤盐分含量变化的适时监测数据, 分析了地下水化学特征的变化及影响其变化的各相关因子,结果表明:地下水化学特征的变化呈现明显的阶段性规律, 地下水化学组分的变化与距离输水河道的远近、地下水埋深、河道径流量以及土壤盐分含量之间具有较高的相关性; 地下水埋深在5 m 及5 m 以下时, 地下水化学组分含量较低, 水质较好。而埋深在5 m 时的水位条件能够满足该区域建群种植物的生存, 为输水条件下的理想水位;地下水化学特征变化的阶段性特点和土壤剖面盐分含量的分布规律及其相互关系说明,在当前输水模式下配合面上输水将能更好地促进生态恢复。

本文引用格式

陈永金, 陈亚宁, 李卫红, 刘加珍, 黄辉 . 塔里木河下游间歇性输水对土壤水化学的影响[J]. 地理学报, 2007 , 62(9) : 970 -980 . DOI: 10.11821/xb200709008

Abstract

Based on the data of the groundwater buried depths, the chemical properties, salinity in soil profile and the basic information on each delivery of water collected from the year 2000 to 2006, the variational characteristics of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors which had close relationships with the variations in groundwater chemistry included the distances of monitoring wells from water channel, the depths of groundwater, water flux in watercourse and the salinities in soils. The relationships between chemical variations and groundwater depths indicated that the water quality was the best with the groundwater ranging from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower Tarim River should be 5-6 m.

参考文献


[1] Chen Yaning, Zhang Xiaolei, Zhu Xiangmin et a1. Analysis on the ecological effects of eco-water delivery to the lower reaches of the Tarim River, Xinjiang, China. Science in China (Series D), 2004, 34(5): 475-482.
[陈亚宁, 张小雷, 祝 向民等. 新疆塔里木河下游断流河道输水的生态效应分析. 中国科学(D 辑): 地球科学, 2004, 34 (5): 475-482.]

[2] Wen Xiaohu. Analysis on the spatial differentiation of hydrochemical characteristics in the Heihe River watershed. Arid Area Research, 2004, 21(1): 1-6.
[温小虎. 黑河流域水化学空间分异特征分析. 干旱区研究, 2004, 21(1): 1-6.]

[3] Wang Guiling, Lin Wenjing, Zhang Fawang. The environmental evolution of groundwater in Taihang Mountain-footplain of North China. Journal of Arid Land Resources and Environment, 2004, 18(3): 74-77.
[王贵玲, 蔺文静, 张发旺. 太行 山前平原地下水环境演化规律研究. 干旱区资源与环境, 2004, 18(3): 74-77.]

[4] Garrels R M, MacKenzie F T. Origin of the chemical compositions of some springs and lakes. In: Equilibrium Concepts in Natural Waters, American Cancer Society, Washington, DC. 1967.

[5] White A F, Claassen H C, Benson L V. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainer Mesa, Nevada. US Geol. Surv. Water-Supply Paper, 1980, 1535-1557.

[6] Frape S K, Fritz P, McNutt R H. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim. Cosmochim. Acta, 1984, 48: 1617-1627.

[7] Hem J D. Study and interpretation of the chemical characteristics of natural water. US Geol. Surv. Water-Supply Paper, 1989, 22-54.

[8] Thomas J M, Welch A H, Preissler A M Geochemical evolution of ground water in Smith Creek Valley: A hydrologically closed basin in central Nevada. USA Applied Geochem., 1989, 4: 493-510.

[9] Ciinevt Giiler, Geoffrev D Thyne. Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. Journal of Hydrology, 2004, 285: 177-198. 10 Kristmannsdóttir H, ármannsson H. Groundwater in the Lake Myvatn area, northern Iceland: Chemistry, origin and interaction. Aquatic Ecology, 2004, 38(2): 115-128.

[11] Zhou Changjin. Characteristics of the Heihe water resources and water environmental protection。Journal of Natural Resources, 2002, 17(6): 721-728.
[周长进. 黑河水资源特征及水环境保护. 自然资源学报, 2002, 17(6): 721-728.]

[12] Guo Dongmei. Analysis on the reason of groundwater characteristics in Yaodu. Ground Water, 2004, 26(1): 20-22.
[郭 冬梅. 尧都区地下水化学特征成因分析与探讨. 地下水, 2004, 26(1): 20-22.]

[13] Lou Z H, Zhang B J, Cai X Y. Chemical fields in Songliao continental oil-bearing sedimentary basin. Chinese Journal of Geochemistry, 1999, 18(2): 163-171.

[14] Wu Yaoguo, Li Yunfeng, Wang Huimin et al. Effect on the soil and groundwater along a polluted river. Journal of Xi'an Engineering University, 2004, 26(1): 20-22.
[吴耀国, 李云峰, 王惠民等. 污染河流对沿岸土壤和地下水化学 环境的影响. 西安工程学院学报, 2004, 26(1): 20-22.]

[15] Bayless E Randall. Acid-generating salts and their relationship to the chemistry of groundwater and storm runoff at an abandoned mine site in southwestern Indiana, U.S.A. Journal of Contaminant Hydrology, 1993, 12(4): 313-328.

[16] Li Xiangyun, Zhang Yushu, Wang Lixin et a1. Analysis of the groundwater characteristics at the lower reaches of Tarim River. Jouma1 ofArid Land Resources and Environment, 2002, 16(2):27-31.
[李香云, 章予舒, 玉立新等. 塔 里木河干流下游地下水特征分析. 干早区资源与环境, 2002, 16(2): 27-31.]

[17] Chen Debin, Chen Xuguang, Gu Xinlu et al. Primary discussion on hydro-chemical characteristics and formation mechanism of groundwater in Awati County. Arid Land Geography, 2001, 24(4): 376-379.
[陈德斌, 陈旭光, 顾新鲁 等. 阿瓦提县地下水水化学特征及成因初探. 干旱区地理, 2001, 24(4): 376-379.

[18] Rodriguez R, Candela L. Changes in groundwater chemistry due to metallurgical activities in an alluvial aquifer in the Moa area (Cuba). Environmental Geology, 2004, 46(1): 71-82.

[19] Leybourne Metthew I. Composition of groundwaters associated with porphyry-Cu deposits, Atacama Desert, Chile: Elemental and isotopic constraints on water sources and water-rock reactions. Geochimica, 2006, 70: 1616-1635.

[20] Liao Zisheng, Lin Xueyu. Chemical characteristics and variations of groundwater quality in Songnen Basin。Earth Science-Journal of China University of Geosciences. 2004, 29(1): 96-102.
[廖资生, 林学钰. 松嫩盆地的地下水化学 特征及水质变化规律. 地球科学- 中国地质大学学报, 2004, 29(1): 96-102.]

[21] Ghobadi, M.H., Khanlari, G. R., Djalaly, H., Seepage problems in the right abutment of the Shahid Abbaspour dam, southern Iran, Engineering Gerlogy, 2005,82(2): 119-126.

[22] Bai Yuhua. A study on chemical composition of alluvial plain phreatic water in Nanjing City. Journal of Nanjing Architectural and Civil Engineering Institute, 1997, (1): 47-52.
[白玉华. 南京市区冲积平原浅层潜水化学成分的成因 分析, 南京建筑工程学院学报, 1997, (1): 47-52.]

[23] Li Xin, Nian Fuhua. Effect of human activities on groundwater in Alar irrigation area in Xinjiang. Journal of Arid Land Resources and Environment, 1999, 13(2): 41-47.
[李新, 年福华. 人类活动对新疆阿拉尔灌区地下水的影响分析. 干 旱区资源与环境, 1999, 13(2): 41-47.]

[24] Zhang Hongfeng, Li Weihong, Ge Hongtao et a1. Compositor analysis on correlation between groundwater level and water chemical contents at the lower reaches of Tarim River. Arid Land Geography, 2003, 26(3): 260-263.
[张宏锋, 李卫红, 葛洪涛等. 塔里木河下游地下水位与水化学成分关联度排序分析. 干旱区地理, 2003, 26(3): 260-263.]

[25] Xu Hailiang, Song Yudong Li Weihong et al. The dynamics of water and salt after ecological water transport to the lower reaches of Tarim River. Journal of Arid Land Resources and Environment, 2004, 18(3): 63-67.
[徐海量, 宋郁 东, 李卫红等. 生态输水后塔里木河下游地下水水盐动态变化. 干旱区资源与环境, 2004,18(3): 63-67.]

[26] Chen Y J, Chen Y N, Liu J J et al. Dynamical variations in groundwater chemistry influenced by intermittent water delivery at the lower reaches of the Tarim River. Journal of Geographical Sciences, 2005,15(1):13-19.

[27] Haimiti Yimiti, Yang Chuande. Analysis on the hydraulic effects of water resources utilization in Tarim River valley. In: The Water Resources, Environment and Management of Tarim River Watershed. Beijing: China Environmental Science Press, 1998. 84-91.
[海米提.依米提, 杨川德. 塔里木河水资源利用所产生的水文效应分析. 见: 塔里木河流 域水资源、环境与管理. 北京: 中国环境科学出版社, 1998. 84-91.]

[28] Sun Yongqiang, Yin Linke, Zhang Xiaofen. Status of eco-environment in middle and lower reach of Tarim River and the management countermeasures. Journal of Arid Land Resources and Environment, 2003, 17(5): 70-75.
[l 孙永强, 尹 林克, 张小芬. 塔里木河下游生态环境现状与治理对策. 干旱区资源与环境, 2003, 17(5): 70-75.]

[29] Chen Yongjin, Chen Yaning, Li Weihong et al. The reaction of groundwater chemical characteristics to the eco-water conveyance in the lower Tarim River. Acta Geographica Sinica, 2005, 60(2): 309-318.
[陈永金, 陈亚宁, 李卫红等. 塔里木河下游地下水化学特征对生态输水的响应. 地理学报, 2005, 60(2): 309-318.]

[30] Liu Peijun. The physical environment of Tarim River Valley. In: Study on the Resources and Environment with the Help of Remote Sensing. Beijing: Scientific and Technical Documents Publishing House, 1990.13-16.
[刘培君. 塔里木 河两岸的自然地理条件. 见: 塔里木河两岸资源与环境遥感研究. 北京: 科学技术文献出版社, 1990. 13-16.]

[31] Yang Qing, He Qing. Relations of the changes in weather and eco-environment in Tarim River Valley. Weather in Xinjiang, 2000, 39(3): 11-14.
[杨青, 何清. 塔里木河流域的气候变化与生态环境. 新疆气象, 2000, 39(3): 11-14.]

[32] Deng Mingjiang. Study on the reaction of plant restoration to water transport and ecological rebuild in the lower reaches of Tarim River. China Water Resources, 2004, 14: 15-18.
[邓铭江. 塔里木河下游应急输水植被恢复响应及 生态修复研究, 中国水利, 2004, 14: 15-18.]

[33] Fan Zili, Ma Yingjie, Zhang Hong et a1. Research of eco-water table and rational depth of groundwater of Tarim River drainage basin. Arid Land Geography, 2004, 27(1): 8-13.
[樊自立, 马英杰, 张宏等. 塔里木河流域生态地下水位及 其合理深度确定. 干旱区地理, 2004, 27(1): 8-13.]

文章导航

/