基于多目标决策和CA 模型的土地利用变化 预测模型及其应用

  • 福州大学福建省空间信息工程研究中心, 空间数据挖掘与信息共享教育部重点实验室, 福州350002
邱炳文(1973-), 女, 博士, 助理研究员。现从事GIS 应用研究。E-mail: qiubingwen@fzu.edu.cn

收稿日期: 2006-08-21

  修回日期: 2007-11-26

  网络出版日期: 2008-02-25


福建省科技计划重点项目(2006Y0019, 2007I0016, 2005I011); 福建省自然科学基金项目(D0710011); 国际科 技合作项目(2007DFA21600)

Land Use Change Simulation Model Based on MCDM and CA and Its Application

  • Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Spatial Information Research Center of Fujian Province, Fuzhou University, Fuzhou 350002, China

Received date: 2006-08-21

  Revised date: 2007-11-26

  Online published: 2008-02-25

Supported by

Key Project of Science and Technology of Fujian Province, No. 2006Y0019, No.2007I0016, No.2005I011; Foundation Project of Fujian Province, No. D0710011; International Cooperation Project, No.2007DFA21600


结合宏观用地总体需求与微观土地利用适宜性, 集成灰色预测模型、多目标决策模型、 元胞自动机模型、地理信息系统技术方法, 建立了GCMG 土地利用变化预测模型。GCMG 模型包括非空间和空间2 个模块, 非空间模块侧重依据宏观社会经济发展趋势预测研究区未 来的总体用地需求变化, 而空间模块集成多目标决策模型、元胞自动机、地理信息系统等技 术方法实现了基于土地适宜性的土地利用空间配置。运用该模型对龙海市2000-2010 年土地 利用变化进行了情景模拟, 结果表明园地和建设用地是该区域内变化最为显著的用地类型, 基本农田保护政策严格实施与否将对龙海市未来土地利用变化产生深远的影响。GCMG 模型 在龙海市的应用实例表明, 该模型将土地利用系统作为一个整体, 兼顾到区域宏观水平上的 土地利用需求与局部尺度上的土地利用适宜性, 能够较好地同时模拟不同土地利用类型以及 不同人类决策情景下的土地利用转换概率, 因而可为理解土地利用多尺度复杂系统提供一定 的帮助。


邱炳文, 陈崇成 . 基于多目标决策和CA 模型的土地利用变化 预测模型及其应用[J]. 地理学报, 2008 , 63(2) : 165 -174 . DOI: 10.11821/xb200802006


A macro-micro integrated land use change model, Grey-Cellular automata (CA) -Multi-Criterion Decision-Making (MCDM)-Geographic Information System (GIS) based model (GCMG for short) which can simulate human decision making process was proposed. The GCMG model borrows the theoretical hypothesis of CLUE-S model which supposes that regional land use change is driven by its land use requirement and the land use distribution is in dynamic balance with land use demands and regional natural resources and socio-economic conditions. The GCMG model consists of both non-spatial and spatial part. The non-spatial part, so called macro model, calculates the changes of land use demand in the future based on experiential relationship of land use and its dominating drivers using the grey model. The spatial part, also called micro model, completes the land use allocation process whose total quantity is calculated by the non-spatial part with a combined method of MCDM, GIS and CA model. In the spatial part, firstly MCDM method was used to simulate the human decision making process for land use change considering socio-economic and bio-physical conditions; the results of which was brought into conversion rule of CA model; and the integration was finally implemented in GIS to model the land use allocation. To illustrate the functioning of GCMG model and its validation, it is applied in Longhai County to simulate land use change in 2010. As one of the typical counties at coastal area of Fujian Province, great changes in land use have taken place in Longhai County over the past decades, including the garden plots expansion, town land for urban and rural housing, and land for industrial and mining purpose. Firstly the GCMG simulation results are compared with map of the actual distribution of land use in 2000 for validation. The Kappa equals to 0.93 in the simulation at 10 m×10 m grid level and has gained satisfactory results. Then the validated model is applied to simulate the land use conversion probabilities under different decision-making scenarios. The results show that the basic farmland protection policy will determine the future land use change pattern. The application of GCMG model indicated that it can both simulate the land use demand at macro level and land suitability at micro level, thus possessing the ability of studying the multi-level land use system.


[1] He Chunyang, Shi Peijun, Chen Jin. Research of scenarios simulation model based on dynamic model and CA. Science in China (Series D), 2005, 35(5): 464-473.
[何春阳, 史培军, 陈晋等. 基于系统动力学模型和元胞自动机模型的土地 利用情景模型研究. 中国科学(D 辑), 2005, 35(5): 464-473.]

[2] Li Xia, Yeh Anthony Gar-On. Neural-network-based cellular automata for realistic and idealized urban simulation. Acta Geographica Sinica, 2002, 57(2): 159-166.
[黎夏, 叶嘉安. 基于神经网络的单元自动机CA 及在真实和优化的城市模 拟. 地理学报, 2002, 57(2): 159-166.]

[3] White R, Engelen G, Uljee I. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B, 1997, 24: 323-343.

[4] Veldkamp A, Fresco L O. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modeling, 1996, 91: 231-218.

[5] Veldkamp A, Fresco L O. CLUE: A conceptual model to study the conversion of land use and its effects. Ecological modeling, 1996, 85: 253-270.

[6] Koen P Overmars, Verburg P H. Multilevel modelling of land use from field to village level in the Philippines, Agricultural Systems, 2006(2/3): 435-456.

[7] Veldkamp A, Fresco L O. Reconstructing land use drivers and their spatial scale dependence for Costa Rica. Agricultural Systems, 1997, 55: 19-43.

[8] Hubacek K, Sun L. A scenario analysis of China's land use and land cover change: Incorporating biophysical information into input-output modeling. Structural Change and Economic Dynamics, 2001, 12: 367-397.

[9] Lambin E F, Rounsevell M D A, Geist H J. Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems and Environment, 2000, 82: 321-331.

[10] Briassoulis H. Analysis of land use change: Theoretical and modeling approaches. Loveridege S (ed.). In the Web Book of Regional Science. West Virginia University, Morgantown, 2000.

[11] Zhou Chenghu, Sun Zhanli, Xie Yichun. The Research of Geography Cellular Automata. Beijing: Science Press, 1999. 1-163.
[ 周成虎, 孙战利, 谢一春. 地理元胞自动机研究. 北京: 科学出版社, 1999. 1-163.]

[12] Batty M, Xie Y. From cells to cities. Environment and Planning B: Planning and Design, 1994, 21: 531-548.

[13] Batty M, Yichun Xi, Zhanli Sun. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 1999, 23: 205-233.

[14] Almeida C M D, Michael Batty, Antonio Miguel Vieira Monteiro et al. Stochastic cellular automata modeling of urban land use dynamics. Computers, Environment and Urban Systems, 2003, 27: 481-509.

[15] Fang S, Gertner G Z, Sun Zhanli et al. The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landscape and Urban Planning, 2005, 73(4): 294-306.

[16] Ward D P, Murray A T, Phinn S R. A stochastically constrained cellular model of urban growth. Computer, Environment and Urban System, 2000, 24: 539-558.

[17] Yeh Anthony Gar-On, Li Xia. Errors and uncertainties in urban cellular automata. Computers, Environment and Urban Systems, 2006, 30(1): 10-21.

[18] White R, Engelen G. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 2000, 24: 383-400.

[19] White R, Engelen G, Uljee I. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B, 1997, 24: 323-343.

[20] Wu F, Webster C J. Simulating artificial cities in a GIS environment: Urban growth under alternative regulative regimes. International Journal of Geographical Information Science, 2000, 14(7): 625-648.

[21] R Gil Pontius Jr, Joseph D Cornell, Charles A S Hall. Modeling the spatial pattern of land-use change with GEOMOD2: Application and validation for Costa Rica. Agriculture, Ecosystems and Environment, 2001, 85: 191-203.

[22] Douglas P Ward, Alan T Murray, Stuart R Phinn. Integrating spatial optimization and cellular automata for evaluating urban change. Ann. Reg. Sci., 2003, 37: 131-148.

[23] Deng Julong. Grey Control System. Wuhan: Huazhong University of Science and Technology Press, 1985.
[ 邓聚龙. 灰 色控制系统. 武汉: 华中工学院出版社, 1985.]

[24] Hopkins Lewis D. Methods for generating land suitability maps: A comparative evaluation. Journal of the American Institute of Planners, 1977, 43(4): 386-400.

[25] Michael J Hill, Robert Braaten, Simon M Veitch et al. Multi-criteria decision analysis in spatial decision support: The ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environmental Modelling & Software, 2005, 20: 955-976.

[26] Wu F, Webster C J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 1998, 25: 103-126.

[27] Eastman J R, Weigen Jin, Peter A K Kyem et al. Raster procedure for mulit-criteria decisions. American Society for Photogrammetry and Remote Sensing, 1995, 61(5): 530-547.

[28] Qiu Bingwen. Scale effect analysis of driving forces of land-use patterns of Longhai County in Fujian Province. Journal of Natural Resources, 2007, 22(1): 70-78.
[ 邱炳文. 福建省龙海市土地利用空间分布影响因子的尺度效应分析, 自 然资源学报, 2007, 22(1): 70-78.]

[29] Zheng Daoxi. Based on the new century, make new leap forward and try to press forward Zhangzhou urbanization process. http://www.zhangzhou.gov.cn/zzjjyj/200201/07.htm.
[郑道溪. 立足新世纪, 实现新跨越, 努力推进漳州城市 化进程. http://www.zhangzhou.gov.cn/zzjjyj/200201/07.htm.]

[30] Pontius R G. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering & Remote Sensing, 2000, 66(8): 1011-1016.