土地利用

西北地区大气降水δ18O 的特征及水汽来源

展开
  • 1. 中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室, 北京100101;
    2. 中国科学院研究生院, 北京100049;
    3. 中国生态系统研究网络水分分中心, 北京100101;
    4. 中国科学院大气物理研究所, 北京100029
柳鉴容(1982-), 女, 辽宁沈阳人, 中国地理学会会员,硕士研究生, 主要研究方向为流域水循环。 E-mail: liujr.05s@igsnrr.ac.cn

收稿日期: 2007-08-28

  修回日期: 2007-11-25

  网络出版日期: 2008-01-25

基金资助

国家自然科学基金项目(40671034); 中国科学院资源环境领域野外台站研究基金项目“中国生态系统研究网 络大气降水环境同位素研究项目”

Characteristics of δ18O in Precipitation over Northwest China and Its Water Vapor Sources

Expand
  • 1. Key Laboratory of Water Cycle & Related Surface Process, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of the Chinese Academy of Sciences, Beijing 100039, China;
    3. CERN Sub-center of Water, Beijing 100101, China;
    4. Institute of Atmospheric Physics, CAS, Beijing 100029, China

Received date: 2007-08-28

  Revised date: 2007-11-25

  Online published: 2008-01-25

Supported by

National Natural Science Foundation of China, No.40671034; Foundation for Environment Field Stations Research of CAS, Program for Isotopes in Precipitation of Chinese Ecosystem Research Network

摘要

根据2005 年各月在中国大气降水同位素观测网(CHNIP) 位于西北地区的阜康、策勒、 临泽、海北、沙坡头、长武和安塞观测站点收集的降水样品, 对其中的同位素的组分进行测 定, 分析了西北地区大气降水中δ18O的时空分布特征。所建立的局地大气降水线方程"D = 7.05δ18O- 2.17, 反应了西北地区独特的局地气候特点。降水δ18O的温度效应显著, 而降水量 效应只在夏季(6-8 月) 间存在。δ18O的空间分布特征可以很好地反映西北地区的大气环流背 景。应用瑞利分馏模型及动力分馏模型对阜康- 安塞沿线降水δ18O 的定量模拟结果, 揭示了 西北地区降水水汽的分馏主要以动力分馏为主, 雨滴在降落过程中历经了一定的二次蒸发过 程, 其降水水汽中也混入一定量的由局地再蒸发的水汽。此外, 利用西北地区在全球大气降 水同位素观测网络(GNIP) 中的乌鲁木齐、和田、张掖、兰州、银川和西安6 个站点的长时 间序列的δ18O与降水量、温度等气候因子建立的多元线性回归关系可以对降水δ18O进行定量 估算; 基于乌鲁木齐站点12 年的δ18O资料对该地区的温度拟合, 为历史气候的定量恢复提供 了依据。

本文引用格式

柳鉴容,宋献方,袁国富,孙晓敏,刘鑫,陈锋,王志民,王仕琴 . 西北地区大气降水δ18O 的特征及水汽来源[J]. 地理学报, 2008 , 63(1) : 12 -22 . DOI: 10.11821/xb200801002

Abstract

In order to reveal the characteristics and climatic controls on the stable isotope composition in precipitation over Northwest China, seven stations have been selected from the Chinese Network of Isotopes in Precipitation (CHNIP). During the year 2005, monthly precipitation samples have been collected and analyzed for the composition of δ18O . The established local meteoric water line "D = 7.05δ18O - 2.17, based on the 50 monthly samples obtained, could be treated as isotope input functions across the region. The deviations of the slope and the intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions over Northwest China. The monthly δ18O values were characterized by a strong correlation with the surface air temperature and a weak correlation with precipitation amount. However, if only the % values during summer period have been taken into account, the amount effect visualized. Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Northwest China. The quantitative simulation of δ18O, which involved a Rayleigh fractionation model and a kinetic fractional model, demonstrated that the kinetic fractionation was the dominating function of condensation of raindrops. Furthermore, the raindrops suffered re-evaporation during the falling process, and the precipitation vapor has been mixed with a quantity of local recycled water vapor. A multiple linear regression equation and a δ18O-T relation were gained by using meteorological parameters to evaluate physical controls on the long-term values. The established δ18O-T relation, which has been based on the present-day precipitation, was the first step of quantitatively reconstructing the paleo-climate.

参考文献


[1] Dansgaard W. The abundance of δ18O in atmospheric water and water vapour. Tellus, 1953, 5(4): 461-469.

[2] Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4): 436-468.

[3] Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research, 1998, 103(28): 721-728, 742.

[4] Zhang Xinping, Liu Jingmiao, Tian Lide et al. Variations of (18O in precipitation along vapour transport paths over Asia. Acta Geographica Sinica, 2004, 59(5): 699-708.
[章新平, 刘晶淼, 田立德等. 亚洲降水中)18O沿不同水汽输送路径的 变化. 地理学报, 2004, 59(5): 699-708.]

[5] Harvey F E, Welker J M. Stable isotopic composition of precipitation in the semi-arid north-central portion of the US Great Plains. Journal of Hydrology, 2000, 238: 90-109.

[6] Zhang Cunjie, Xie Jinnan, Li Dongliang et al. Effect of East-Asian monsoon on drought climate of Northwest China. Plateau Meteorology, 2002, 21(2): 193-198.
[张存杰, 谢金南, 李栋梁等. 东亚季风对西北地区干旱气候的影响.高原 气象, 2002, 21(2): 193-198.]

[7] Guo Jiangyong, Li Yaohui. Climatic characteristics of summer precipitation in north western China. Arid Zone Research, 2006, 23(3): 489-494.
[郭江勇, 李耀辉. 中国西北地区夏季降水的气候特征. 干旱区研究, 2006, 23(3): 489-494.]

[8] Wang Baojian, Li Dongliang, Huang Yuxia et al. Relation between abnormity of East Asia summer monsoon and summer precipitation in east part of Northwest China. Journal of Glaciology and Geocryology, 2004, 26(5): 563-568.
[王宝鉴, 李栋梁, 黄玉霞等.东亚夏季风异常与西北东部汛期降水的关系分析. 冰川冻土, 2004, 26(5): 563-568.]

[9] Yu Yaxun, Wang Jinsong, Li Qingyan. Spatial and temporal distribution of water vapour and its variation trend in atmosphere over Northwest China. Journal of Glaciology and Geocryology, 2003, 25(2): 149-156.
[俞亚勋, 王劲松, 李 青燕. 西北地区空中水汽时空分布及变化趋势分析. 冰川冻土, 2003, 25(2): 149-156.]

[10] Wang Xiurong, Xu Xiangde, Yao Wenqing. Differences in circulation and moisture between dry and wet years in Northwest China. Journal of Applied Meteorological Science, 2002, 13(5): 550-559.
[王秀荣, 徐祥德, 姚文清. 西北地 区干、湿夏季的前期环流和水汽差异. 应用气象学报, 2002, 13(5): 550-559.]

[11] Wang Keli, Jiang Hao, Zhao Hongyan. Advection and convergence of water vapour transport over the northwest China. Advances in Water Science, 2006, 17(2): 164-169.
[王可丽, 江灏, 赵红岩. 中国西北地区水汽的平流输送和辐合输 送. 水科学进展, 2006, 17(2): 164-169.]

[12] Bai Huzhi, Li Dongliang, Lu Dengrong et al. Climate characteristics of summer precipitation days in eastern part of northwest. Agricultural Research in the Arid Areas, 2005, 23(3): 133-140.
[白虎志, 李栋梁, 陆登荣等. 西北地区东 部夏季降水日数的变化趋势及期气候特征. 干旱地区农业研究, 2005, 23(3): 133-140.]

[13] Wang Chenghai, Cui Yang. A study of the stability of the precipitation cycle over Northwest China in the past 50 years. Advances in Earth Science, 2006, 21(6): 576-584.
[王澄海, 崔洋. 西北地区近50 年降水周期的稳定性分析. 地球科学进展, 2006, 21(6): 576-584.]

[14] Su Buda, Wang Guojie, Jiang Tong. Spatial and temporal variations and scaling of precipitation over Northwest China during 1960-2004. Journal of Glaciology and Geocryology, 2007, 29(2): 176-182.
[苏布达, 王国杰, 姜彤. 西北地区 45a 来降水异常的时空变化及其标度特征. 冰川冻土, 2007, 29(2): 176-182.]

[15] Liu Jianrong, Song Xianfang, Yuan Guofu et al. Characteristics of stable isotopes in summer monsoonal precipitation in South China and the moisture sources evidence from "18O signature. Journal of Natural Resources, 2007, 22 (6): 1004-1012.
[柳鉴容, 宋献方, 袁国富等. 我国南部夏季季风降水水汽来源的稳定同位素证据. 自然资源学报, 2007, (6): 1004-1012.]

[16] Song Xianfang, Liu Jianrong, Sun Xiaomin et al. Establishment of Chinese Network of Isotopes in Precipitation (CHNIP) based on CERN. Advances in Earth Science, 2007, 22(7): 738-747.
[ 宋献方, 柳鉴容, 孙晓敏等. 基于 CERN 的中国大气降水同位素观测网络. 地球科学进展, 2007, 22(7): 738-747.]

[17] Craig H. Isotopic variations in meteoric waters. Science, 1961, 133: 1702-1703.

[18] Yurtsever Y, Gat J R. Atmospheric waters. In: Gat J R, Gonfiantini R (eds.). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. International Atomic Energy Agency, Vienna, 1981. 103-142.

[19] Yamanaka T, Tsujimura M, Oyunbaatar D et al. Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. Journal of Hydrology, 2007, 333: 21-34.

[20] Lin Zhenyao, Zheng Du. The tracks of moisture transportation and its vapour geoecologcial characteristics on the Qinghai-Xizang Plateau. Arid Zone Research, 1992, 9(2): 1-7.
[林振耀, 郑度. 新疆塔里木盆地东缘水汽输送路径. 干 旱区研究, 1992, 9(2): 1-7.]

[21] Wang Baojian, Huang Yuxia, Tao Jianhong et al. Regional features and variations of water vapour in Northwest China. Journal of Glaciology and Geocryology, 2006, 28(1): 15-21.
[王宝鉴, 黄玉霞, 陶健红等. 西北地区大气水汽的区域 分布特征及其变化冰川冻土, 2006, 28(1): 15-21.]

[22] Wang Keli, Jiang Hao, Zhao Hongyan. Atmospheric water vapour transport from westerly and monsoon over the Northwest China. Advances in Water Science, 2005, 16(3): 432-438.
[王可丽, 江灏, 赵红岩. 西风带与季风对中国西 北地区的水汽输送. 水科学进展, 2005, 16(3): 432-438.]

[23] Lu Junmei, Zhang Qingyun, Tao Shiyan et al. Characteristics of the onset and advance of Chinese Asian monsoon. Chinese Science Bulletin, 2006, 51(3): 332-338.
[吕俊梅, 张庆云, 陶诗言等.亚洲夏季风的爆发及推进特征. 科学通 报, 2006, 51(3): 332-338.]

[24] Lu Junmei, Tao Shiyan, Zhang Qingyun et al. Processes of intraseasonal evolution of Asian summer monsoon under climatological mean condition. Plateau Meteorology, 2006, 25(5): 814-823.
[吕俊梅, 陶诗言, 张庆云等. 气候平均状 况下亚洲夏季风的季节内演变过程. 高原气象, 2006, 25(5): 814-823.]

[25] He Jinhai, Liu Yunyun, Chang Yue. Analysis of summer precipitation anomaly and the feature of water vapor transport and circulation in Northwest China. Arid Meteorology, 2005, 23(1): 10-15.
[何金海, 刘芸芸, 常越. 西北地区夏季降 水异常及其水汽输送和环流特征分析. 干旱气象, 2005, 23(1): 10-15.]

[26] Zhao Di, Yao Ping, Yang Ruowen et al. The spatial and temporal distribution features of onset period of mean rainy season over Asian monsoon region. Journal of Yunnan University, 2006, 28(4): 333-336.
[赵荻, 姚平, 杨若文等. 亚 洲季风区平均雨季起始期的时空分布特征. 云南大学学报(自然科学版), 2006, 28(4): 333-336.]

[27] He Yuanqing, Yao Tandong, Yang Meixue et al. The new results of #18O studies on the system of precipitation, snow-ice and glacial runoff at the Glacier Baishui No.1 region in Mt. Yulong, China. Journal of Glaciology and Geocryology, 2000, 22(4): 391-393.
[何元庆, 姚檀栋, 杨梅学等. 玉龙山白水1 号冰川区大气降水—冰雪—水文系 统内$18O研究的新结果. 冰川冻土, 2000, 22(4): 391-393.]

[28] Zhang Xinping, Liu Jingmiao, Sun Weizhen et al. Study on relationship between stable oxygen isotope in precipitation and relative metrological parameters in Southwest China. Science in China (Series D), 2006, 36(9): 850-859.
[章新平, 刘晶淼, 孙维贞等. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究. 中国科学(D 辑), 2006, 36(9): 850-859.]

[29] Craig H, Gordon L. Deuterium and oxygen-18 variation in the ocean and the marine atmosphere. In: Tongiorgi E (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, 1965. 3-130.

[30] Gat J R. Comments on the stable isotope method in regional groundwater investigations. Water Resources Research, 1971, 7: 980-993.

[31] Gonfiantini R. Environmental isotopes in lake studies. In: Fritz P, Fontes J C (eds.), Handbook of Environmental Isotope Geochemistry, Vol. 2, The Terrestrial Environment. Amsterdam, Netherlands, Elsevier, 1996. 113-168.

[32] Friedman I, Machta L, Soller R. Water vapour exchange between a water droplet and its environment. Journal of Geophysical Research, 1962, 67: 2761-2766.

[33] Clark I D, Fritz P. Environmental Isotopes in Hydrogeology. Lewis Publisher, 1999.
[ 张慧, 张新基译. 水文地质学中 的环境同位素. 郑州: 黄河水利出版社, 2006. 59.]

[34] Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research, 1998, 103(28): 721-728, 742.

文章导航

/