水资源

华北平原浅层地下水水位动态变化

展开
  • 1. 中国科学院地理科学与资源研究所陆地水循环与地表过程重点实验室, 北京100101;
    2. 日本国立环境研究所, 筑波305-8506;
    3. 天津地质矿产研究所, 天津300170;
    4. 北京师范大学水科学研究院水沙科学教育部重点实验室, 北京100875
王仕琴(1981-), 博士生, 中国地理学会会员, 主要从事水文水资源、流域水循环研究。 E-mail: wangsq.06b@igsnrr.ac.cn

收稿日期: 2007-07-19

  修回日期: 2008-02-20

  网络出版日期: 2008-05-26

基金资助

国家自然科学基金项目(40671034)

Dynamic Features of Shallow Groundwater in North China Plain

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. National Institute for Environmental Studies, Tsukuba 305-8506, Japan;
    3. Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China;
    4. Key Laboratory of Water and Sediment Science, MOE, Water Science College, Beijing Normal University, Beijing 100875, China

Received date: 2007-07-19

  Revised date: 2008-02-20

  Online published: 2008-05-26

Supported by

National Natural Science Foundation of China, No.40671034

摘要

利用中日合作项目在华北平原设置的自动监测设备KADEC-MIZU II 型地下水水位自计仪, 对2004-2006 年39 处浅层地下水水位监测的结果, 结合区域影响地下水宏观动态类型 的主要因素,如地形地貌、地下水埋深、地下水开采程度、地下水漏斗以及河流湖泊等, 叠加各影响因素分区图得到地下水动态影响因素综合分区图, 结合观测孔地下水水位体现的动态 特征, 将华北平原地下水观测点分为山前开采型、山前侧向补给- 径流- 开采型、中部河道带补给- 开采型、中部地下水浅埋区降水入渗- 蒸发型动态、黄河影响带侧向补给- 蒸发型 动态和滨海平原区入渗- 蒸发型6 大地下水动态类型。在此基础上阐明了大区域范围内不同类型地下水水位年内及多年动态变化的特点, 比较了不同类型区地下水动态所受影响因素的不同。

本文引用格式

王仕琴, 宋献方, 王勤学, 肖国强, 刘昌明 . 华北平原浅层地下水水位动态变化[J]. 地理学报, 2008 , 63(5) : 462 -472 . DOI: 10.11821/xb200805002

Abstract

The groundwater level of 39 unconfined observation wells from 2004 to 2006 in North China Plain (NCP) was monitored using automatic groundwater monitoring data loggers KADEC-MIZU II of Japan. The automatic groundwater sensors were installed for the corporation project between China and Japan. Combined with the monitoring results from 2004 to 2006 with the major factors affecting the dynamic patterns of groundwater, such as relief, depth of groundwater level, discharge extent and rivers, the dynamic regions of NCP groundwater were compiled. According to the dynamic features of groundwater in NCP, six dynamic patterns of groundwater level were identified, including discharge pattern in the piedmont plain, lateral recharge-runoff-discharge pattern in the piedmont plain, rechargedischarge pattern in the middle channel zone, precipitation infiltration-evaporation pattern in the shallow groundwater region of the central plain, lateral recharge-evaporation pattern in the recharge-affected area along the Yellow River, and infiltration-discharge-evaporation pattern in the littoral plain. Based on this, various dynamic patterns features of groundwater were interpreted and different factors of different dynamic patterns were compared.

参考文献


[1] Jia Jinsheng, Liu Changming. Groundwater dynamic drift and response to different exploitation in the North China Plain: A case study of Luancheng County, Hebei Province. Acta Geographica Sinica, 2002, 57(2): 201-209.
[贾金生, 刘昌明. 华北平原地下水动态及其对不同开采量响应的计算: 以河北省栾城县为例. 地理学报, 2002, 57(2): 201-209.]

[2] National land resources survey report: The sustainable development of groundwater in North China Plain. 2003.
[国土资 源大调查项目报告: 华北地下水可持续开发利用前景. 2003.]

[3] Zhang Zonghu, Shi Dehong, Shen Zhaoli et al. Evolution and development of groundwater environment in North China Plain under human activities. Acta Geoscientia Sinica, 1997, 18(4): 338-344.
[张宗祜, 施德鸿, 沈照理等. 人类活动影 响下华北平原地下水环境的演化与发展. 地球学报, 1997, 18(4): 337-344.]

[4] Fan Pengfei. Groudwater evolution and prediction in North China Plain. Acta Geoscientia Sinica, 1998, 19(4): 346-352.
[范鹏飞. 华北平原地下水演化及预测. 地球学报, 1998, 19(4): 346-352.]

[5] Xia Jun, Liu Mengyu, Jia Shaofeng et al. Water security problem and research perspective in North China. Journal of Natural Resources, 2004, 19(5): 550-560.
[夏军, 刘孟雨, 贾绍凤等. 华北地区水资源及水安全问题的思考与研究. 自 然资源学报, 2004, 19(5): 550-560.]

[6] Chen Baoren, Hong Zaiji et al. Groundwater Dynamics and Prediction. 1st edn. Beijing: Science Press, 1988. 1-382.
[陈 葆仁, 洪再吉等. 地下水动态及其预测. 第一版. 北京: 科学出版社. 1988. 1-382.]

[7] Zhou Yangxiao. Design of regional groundwater level monitoring networks. Hydrogeology and Engineering Geology, 2007, 34(1): 1-9.
[周仰效. 区域地下水位监测网优化设计方法. 水文地质工程地质, 2007, 34(1): 1-9.]

[8] Groundwater Research Group of Scientific Research Section, China Earthquake Administration. Identification of main disturbance factors for groundawater level and extraction of seismic information. Seismology and Geology, 1983, 5(4): 13-22.
[地下水水位研究组. 地下水水位主要干扰因素的识别与地震信息的提取. 地震地质, 1983, 5(4): 13-22.]

[9] Dong Dianwei, Lin Pei, Yan Ying et al. Optimum design of groundwater level monitoring network of Beijing plain. Hydrogeology and Engineering Geology, 2007, 34(1): 10-19.
[董殿伟, 林沛等. 北京平原地下水水位监测网优化. 水 文地质工程地质, 2007, 34(1): 10-19.]

[10] Bras R L, Rodriguez Iturbe I. Random Functions and Hydrology. Reading, Massachusetts: Addison-Wesley, 1985.

[11] Huang Zhongshu. Spectrum analysis method and its appliance in hydrology and weather. Beijing: Weather Publisher House, 1983. 1-202.
[黄忠恕. 波谱分析方法及其在水文气象中的应用. 北京: 气象出版社, 1983. 1-202.]

[12] Yang Zhongping, Lu Wenxi, Li Ping. Application of time-series model to predict groundwater regime. Journal of Hydraulic Engineering, 2005, 36(12): 1475-1479.
[杨忠平, 卢文喜, 李平. 时间序列模型在吉林西部地下水动态变 化预测中的应用, 水利学报, 2005, 36(12): 1475-1479.]

[13] Zhu Shibin, Zhang Fengxiao. The application of investigation and expert marking method in risk assessment. Shanxi Architecture, 2006, 32(22): 274-275.
[朱仕斌, 张峰晓. 调查和专家打分法在风险评估中的应用. 山西建筑, 2006, 32 (22): 274-275.]

[14] Wu Chen, Zhao Mingxuan. On explanation and utilization of ancient channel resources and relevant politics. Resources Development and Conservation, 1993, 9(1): 21-24.
[吴忱, 赵明轩. 论古河道资源的开发利用与对策: 以华北平原为 例. 资源开发与保护, 1993, 9(1): 21-24.]

[15] Wu Chen, Ma Yonghong, Zhang Xiuqing. Palaeochannel and palaeodrainage patterns in the North China mountains. Geographical Research, 1996, 15(3): 33-41.
[吴忱, 马永红, 张秀清. 华北山地的古河道与古水系. 地理研究, 1996, 15(3): 33-41.]

文章导航

/