8.4 ka 以来纳木错湖芯介形类组合的环境变化意义

  • ä1. 中国科学院青藏高原研究所, 北京100085;
    2. 中国科学院研究生院, 北京100039;
    3. 中国科学院地理科学与资源研究所, 北京100101;
    4. Institut für Umweltgeologic, Technische Universität, Braunschweig, Germany
谢曼平(1978-), 女, 博士生, 全球变化与第四纪环境专业, E-mail: formelody@126.com

收稿日期: 2008-04-12

  修回日期: 2008-06-25

  网络出版日期: 2008-09-25


国家重点基础研究发展规划项目(2005CB422002); 国家自然科学基金项目(40571172); 欧盟第六框架项目 BRAHMATWINN (KZCX3-SW-339) 资助

Ostracodes Assemblages and Their Environmental Significance from Lake Core of Nam Co, Tibetan Plateau

  • 1. Institute of Tibetan Plateau Research, CAS, Beijing 100085, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China;
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    4. Institut für Umweltgeologic, Technische Universität, Braunschweig, Germany

Received date: 2008-04-12

  Revised date: 2008-06-25

  Online published: 2008-09-25

Supported by

National Basic Research Program of China, No. 2005CB422002; National Natural Science Foundation of China, No.40571172; 6th EU Framework Program BRAHMATWINN, No.KZCX3-SW-339


对青藏高原中南部纳木错长332 cm 的NMLC1 孔湖芯研究发现, 沉积物的介形类动物 群计有6 属15 种。介形类属种生态特征和组合变化分析表明这些介形类对环境条件具有敏感 性, 其组合能够很好地反映过去环境变化的特征。结果表明, 8.4 ka 以来具有三个不同的环 境变化时期: 早期在8400~6800 a BP, 湖泊由浅向深发展, 环境具有相对冷湿的特征; 中期 在6800~2500 a BP, 湖泊深度逐渐加大, 环境经历了暖湿—冷湿—冷干的变化, 其中由冷湿 向冷干的转化奠定了纳木错现今环境条件的基础; 晚期在2500~0 a BP, 湖泊深度继续增加, 这个时期的较早阶段, 继续保持了前一时期的冷干特点, 但湖水盐度可能开始增加, 较晚阶 段的冷干化加剧, 陆面流水的活跃性大大降低。研究发现, 纳木错NMLC1 钻孔介形类黑色 壳体的高峰值与介形类的最大生产量相一致, 并且与沉积水动力条件增强相适应, 指示了这 些黑壳的产生与介形类的大量繁殖处于同一阶段, 并且主要为异地搬运为主。钻孔中出现大 量Candona 幼虫壳体, 其原因可能与沉积环境的水动力条件迅速改变有关。


谢曼平,朱立平,彭萍, 甄晓林, 汪勇,鞠建廷, Schwalb . 8.4 ka 以来纳木错湖芯介形类组合的环境变化意义[J]. 地理学报, 2008 , 63(9) : 931 -944 . DOI: 10.11821/xb200809004


A 332-cm long lacustrine core was drilled in the middle south of Tibentan Plateau. From the core, 15 species of ostracodes belonging to 6 genera have been identified. According to the changes of the ostracodes assemblage and the ostracodes ecological characters, which are sensitive to the changed of environment, three stages can be distinguished as follows: The early stage was from 8400 to 6800 aBP, during which the temperature descended in fluctuation which matched with the unstable cooling event of earlier Holocene, the climate was cold-humid, and the lake depth changed from shallow to deep. The middle stage was from 6400 to 2500 aBP, during which the climate changed from warm-humid to cold-humid and then became cold-dry, and the lake depth was becoming deep step by step. Weather pattern shifting during this period, from wet-cold to dry-cold, had been modifying and finally built up modern environments in Nam Co. The late stage (2500 aBP- present) showed a trait of lake depth increasing. At the earlier time of this stage, the climate was still cold-dry, which had the same trend of the end of the middle stage, however, the salinity of the lake increased; at the later time of this stage, the climate showed a general tendency toward cold-dry, as well as the hydrological condition of surface flowing water became faint. The concurrence of black shells percentage and the biggest ostracodes content, as well as the increasing of sedimentary hydrodynamic condition, indicated a post-mortem reworking. The abundance of Candona juvenile shells reflected juvenile mortality as a result of the rapid onset of unfavorable conditions such as catastrophic hydrological condition change.


[1] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau, Journal of Geology, 1993, 101: 177-190.

[2] Wu Guoxiong, Liu Yimin, Liu Xin et al. How Tibetan Plateau heating influence summer climatic distribution of Asia? Atmospheric Science, 2005, 29(1): 47-56.
[吴国雄, 刘屹岷, 刘新等. 青藏高原加热如何影响亚洲夏季的气候格局. 大气科学, 2005, 29(1): 47-56.]

[3] Feng Song, Tang Maocang, Wang Dongmei. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China. Chinese Science Bulletin, 1998, 43(20): 1745-1749.
[冯松, 汤懋苍, 王冬梅. 青藏高原是 我国气候变化启动区的新证据. 科学通报, 1998, 43(6): 633-636.]

[4] Liu Xiaodong, Yin Zhiying, Shao Xuemei et al. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003. Journal of Geophysical Research, 2006, 111: D19109, doi: 1029/2005JD006915

[5] Wang Sumin, Dou Hongshen. Records of Lakes in China. Beijing: Science Press, 1998. 1-13.
[王苏民, 窦鸿身. 中国湖 泊志. 北京: 科学出版社, 1998. 1-13.]

[6] Forester R M, Delorme L D, Bradbury J P. Mid-Holocene climate in Northern Minnesota. Quaternary Research, 1987, 28: 263-273.

[7] Forester R M. Ostracode assemblages from springs in the western United States: Implications for paleohydrology. Memories of the Entomological Society of Canada, 1991, 155: 181-201.

[8] Carbonel P, Colin J P, Danielopol D L et al. Paleoecology of limnic ostracodes: A review of some major topics. Palaeogeography Palaeoclimatology Palaeoecology, 1988, 62: 418-461.

[9] de Deckker P. An account of the techniques using ostracods in palaeolimnology in Australia. Palaeogeography Palaeoclimatology Palaeoecology, 1988, 62: 463-475.

[10] Holmes J A. Nonmarine ostracods as Quaternary palaeoenvironmental indicators. Progress in Physical Geography, 1992, 16(4): 405-431.

[11] Curry B B. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography Palaeoclimatology Palaeogeology, 1999, 148(1-3): 51-63.

[12] Lister G S, Kelts K, Chen K Z et al. Lake Qinghai, China: Closed-basin lake levels and the oxygen isotope record for Ostracoda since the latest Pleistocene. Palaeogeography Palaeoclimatology Palaeogeology, 1991, 84: 141-162.

[13] Mischke S, Fuchs D, Riedel F et al. Mid to late Holocene palaeoenvironment of lake eastern Juyanze (northwestern China) based on ostracods and stable isotopes. Geobios, 2002, 35: 99-110.

[14] Mischke S, Wün nemann B. The Holocene salinity history of Bosten lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: Possible palaeoclimatic implications. Quaternary International, 2006, 154/155: 100-112.

[15] Antje Schwalb, Stephen J Burns, Gabriela Cusminsky et al. Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 187: 323-339.

[16] Sars GO. Fresh-water entomostraca from China and Sumatra. Archive for Mathematic of Naturvidenskab, 1903, 25(8): 3-44.

[17] Huang Baoren. Ostracods from Gansen district, Qaidam Basin. Acta Palaeontologica Sinica, 1964, 12(2): 241-270.
[ 黄 宝仁. 柴达木盆地甘森区介形类化石. 古生物学报, 1964, 12(2): 241-270.]

[18] Huang Baoren, Yang Hengren, You Kunyuan. Pliocene and Quaternary Ostracoda from southern and southwestern Xizang. In: Palaeobiology of Xizang: The 4th volume. Beijing: Science Press, 1982. 326-348.
[黄宝仁, 杨恒仁, 尤坤元. 西藏西部和西南部上新世及第四纪介形类. 见: 西藏古生物(第四分册). 北京: 科学出版社, 1982. 326-348.]

[19] Huang Baoren, Huang Xinggen. Ostracodes from late Pleistocene deposits in Sanggan river valley. Acta Palaeontologica Sinica, 1991, 30(6): 728-738.
[黄宝仁, 黄兴根. 桑干河流域晚更新世介形类. 古生物学报, 1991, 30(6): 728-738.]

[20] Hou Youtang, Chen Deqiong, Yang Hengren et al. The ostracodes fauna of Jiangsu Province between Cretaceous and Quaternary. Beijing: Geological Publishing House, 48-205.
[侯祐堂, 陈德琼, 杨恒仁等. 江苏地区白垩纪—第四纪介 形类动物群. 北京: 地质出版社, 48-205.]

[21] Huang Baoren, Yang Liufa, Fan Yunqi. Ostracodes in modern lakes bottom sediments of Tibet. Acta Micropalaeonotologica Sinica, 1985, 2(4): 369-376.
[黄宝仁. 西藏现代湖泊表层沉积物中的介形类. 微体古生物学 报, 1985, 2(4): 369-376.]

[22] Pang Qiqing, Zheng Mianping, Liu Wengao. Ostracod fossils in Qilin Lake- Bange Lake areas, Tibet and their stratum significance during Late Cenozoic. In: Geological Collections of Qinghai-Tibet Plateau, 1985, 16: 243-264.
[ 庞其清, 郑绵平, 刘文高. 西藏奇林湖— —班戈湖地区晚新生代介形虫化石及其地层意义. 见: 青藏高原地质文集, 1985, 16: 243-264.]

[23] Yang Fan. Distribution of the brackish-salt water ostracods in northwestern Qinghai Plateau and its geological significance. In: Hanai T, Ikeya N, Ishizaki K (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Amsterdam: Elsevier, 1988. 519-530.

[24] Yang Fan, Sun Zhencheng, Cao Chunchao. Discovery of a spinose new genus Qaidamocypris from terrestrial Quaternary in the Qaidam Basin and its significance. Acta Micropalaeontologica Sinica, 1994, 12(3): 275-283.
[ 杨藩, 孙镇城, 曹春潮. 柴达木盆地陆相第四系中介形类新属Qaidamocypris 的发现及意义. 微体古生物学报. 1994, 12 (3): 275-283.]

[25] Yang Fan, Sun Zhencheng, Ma Zhiqiang et al. Quaternary ostracode zones and magnetotratigraphic profiles in the Qaidam Basin. Acta Micropalaeontologica Sinica, 1997, 14(4): 378-390.
[杨藩, 孙镇城, 马志强等. 柴达木盆地第四 系介形类化石带与磁性柱. 微体古生物学报, 1997, 14(4): 378-390.]

[26] Yang Fan, Sun Zhencheng, Zhang Yonghua et al. Taxonomic significance of nodal ornamentation of Quaternary genus Ilyocipris (Ostracoda) from Qaidam Basin, Qinghai Province. Acta Micropalaeontologica Sinica, 2002, 19: 15-32.
[ 杨 藩, 孙镇城, 张永华等. 青海柴达木盆地第四纪介形类属Ilyocypris 壳面瘤状装饰的分类意义. 微体古生物学报, 2002, 19(1): 15-32.]

[27] Chen Kezao, Bowler J M, Kelts K. Palaeoclimatic evolution within the Qinghai-Xizang (Tibet) Plateau in the last 40000 years. Quaternary Science, 1990, (3): 21-31.
[陈克造, Bowle J M, Kelts K. 四万年来青藏高原的气候变迁. 第 四纪研究, 1990, (3): 21-31.]

[28] Mischke S, Herzschuh U et al. Sub-recent ostracoda from Qilian Mountains (NW China) and their ecological significance. Limnologica-Ecology and Management of Inland Waters, 2003, 33(4): 280-292.

[29] Li Yuanfang, Zhang Qingsong, Li Bingyuan et al. Late Pleistocene Ostracoda from Bangong Lake, Xizang and its palaeogeographic significance. Acta Micropalaeotologica Sinica, 1991, 8(1): 57-64.
[李元芳, 张青松, 李炳元等. 西藏 班公错地区晚更新世晚期介形类及其古地理意义. 微体古生物学报, 1991, 8(1): 57-64.]

[30] Li Yuanfang, Zhang Qingsong, Li Bingyuan. Ostracod fanua and environmental changes during the past 17000 years in the western Tibet. Acta Geographica Sinica, 1994, 49(1): 46-54.
[李元芳, 张青松, 李炳元. 青藏高原西北部17000 年 以来的介形类及环境演变. 地理学报, 1994, 49(1): 46-54.]

[31] Fan Hui, Gasse F, Huc A et al. Holocene environmental changes in Bangong Co basin (Western Tibet), Part 3: Biogenic remains. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 120: 65-78.

[32] Zhu Liping, Wang Junbo, Lin Xiao et al. Environmental changes reflected by core sediments since 8.4ka in Nam Co, central Tibet of China. Quaternary Sciences, 2007, 27(4): 588-597.
[朱立平, 王君波, 林晓等. 西藏纳木错深水湖芯 反映的8.4ka 以来的气候环境变化. 第四纪研究, 2007, 27(4): 588-597.]

[33] Peng Jinlan. Ostracod assemblages and environmental changes during 13000-4500 aBP in Peiku Co, Tibet. Acta Micropalaeontologica Sinica, 1997, 14(3): 239-254.
[彭金兰. 西藏佩枯错距今13000-4500 年间的介形类及环境变迁. 微体古生物学报, 1997, 14(3): 239-254.]

[34] Li Yuanfang, Zhu Liping, Li Bingyuan. Environmental changes and ostracoda in the Chen Co lake of southern Tibet in recent 1400 years. Acta Geographica Sinica, 2002, 57(4): 413-421.
[李元芳, 朱立平, 李炳元. 介形类反映的藏南沉错 地区1400 年来环境变化. 地理学报, 2002, 57(4): 413-421.]

[35] Guan Zhihua, Chen Chuanyou, Ou Yuxiong et al. Rivers and Lakes in Tibet. Beijing: Science Press, 1984. 176-182.
[关志华, 陈传友, 区裕雄等. 西藏河流与湖泊. 北京: 科学出版社, 1984. 176-182.]

[36] Zhao Xitao, Zhu Dagang, Yan Fuhua et al. Climate change and lake-level variation of Nam Co, Tibet, since the last interglacial stage. Quaternary Sciences, 2003, 23(1): 41-52.
[赵希涛, 朱大岗, 严富华等. 西藏纳木错末次间冰期以 来的气候变迁与湖面变化. 第四纪研究, 2003, 23(1): 41-52.]

[37] Zhu Dagang, Zhao Xitao, Meng Xiangang et al. Records of depositional breaks and environmental change at theZanongtang section of Nam Co, Tibet since 10 kaBP. Journal of Geomechanics, 2003, 9(4): 355-362.
[朱大岗, 赵希 涛, 孟宪刚等. 西藏纳木错扎弄淌剖面10000 年以来的沉积间断和环境变化记录. 地质力学学报, 2003, 9(4): 355-362.]

[38] Zhu Dagang, Meng Xiangang, Zhao Xitao et al. Lake-level change of Nam Co, Tibet, since the late Pleistocene and environment information of clay minerals in lacustrine deposits. Journal of Geomechanics, 2004, 10(4): 300-309.
[朱大 岗, 孟宪刚, 赵希涛等. 西藏纳木错晚更新世以来湖面变化和湖相沉积中粘土矿物显示的环境信息. 地质力学学 报, 2004, 10(4): 300-309.]

[39] Zhu Dagang, Meng Xiangang, Zhao Xitao et al. Sedimentary evolution of the Nam Co basin, Tibet, since 116 ka BP and Qinghai-Tibet Plateau uplift. Journal of Geomechanics, 2005, 11(2): 172-180.
[朱大岗, 孟宪刚, 赵希涛等. 西藏 纳木错盆地116ka 以来沉积演化与青藏高原隆升. 地质力学学报, 2005, 11(2): 172-180.]

[40] Wu Zhonghai, Zhao Xitao, Wu Zhenhan et al. Palaeovegetation, Palaeoclimate and lake-level change since 120 kaBP in Nam Co, Central Xizang. Acta Geologica Sinica, 2004, 78(2): 242-252.
[吴中海, 赵希涛, 吴珍汉等. 西藏纳木错地 区约120kaBP 以来的古植被、古气候与湖面变化. 地质学报, 2004, 78(2): 242-252.]

[41] Wu Zhonghai, Zhao Xitao, Wu Zhenhan et al. Geological records of climate and environment changes during the Holocene in the Nam Co lake and its adjacent areas. Journal of Glaciology and Geocryology, 2004, 26(3): 275-283.
[ 吴中海, 赵希涛, 吴珍汉等. 西藏纳木错及邻区全新世气候与环境变化的地质记录. 冰川冻土, 2004, 26(3): 275-283.]

[42] Shao Zhaogang, Meng Xiangang, Zhao Xitao et al. Variation of precipitation in Nam Co, Tibet, since the late Pleistocene and its environmental response. Journal of Geomechanics, 2004, 10(4): 337-343.
[邵兆刚, 孟宪刚, 朱大岗 等. 西藏纳木错晚更新世以来古降水量变化及其环境响应. 地质力学学报, 2004, 10(4): 337-343.]

[43] Meisch Claude Freshwater Ostracoda of Western and Central Europe. Spektrum, Heidelberg. 2000: 63-449.

[44] Grimm E C. CONISS: A fortan 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Geosciences Computer, 1987, 13: 13-35.

[45] Shen Zhenshu, Chen Guo, Le Changshuo et al. The Division and Sedimentary Environment of Quaternary Salt-bearing Strata in Qaidam Basin. Beijing: Geological Publishing House, 1993. 62-67.
[沈振枢, 程果, 乐昌硕等. 柴达木盆地第 四纪含盐地层划分及沉积环境. 北京: 地质出版社, 1993. 62-67.]

[46] Sun Zhencheng, Liu Zhan et al. Areal distribution of Quaternary ostracod assemblages and its main controlling factor in Chaidam Basin, NW China. In: Riha J (ed). Ostracoda and Biostraitigraphy. Rotterdam: Balkema, 1995. 277-281.

[47] Liu Z, Wang Y, Chen Y et al. Magnetiostraitigraphy and sedimentologically derived geochronology of the Quaternary lacustrine deposits of a 3000 m thick sequence in the central Qaidam Basin, western China. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 140: 459-473.

[48] Keen MC. A palaeoecological study of the ostracod Hemicyprideis montosa (Jones et Sherborn) from the Sannoisian of NW Europe. Bull Cen Rech Pau-SNPA, 1971, 5(Suppl): 523-543.

[49] Yin Y, Geiger W, Martens K. Effects of genotype and environment on phenotypic variability in Limnocythere inoponata (Crustacea: Ostracoda). Hydrobiologia, 1999, 400: 85-114.

[50] Peng Jinlan. A Preliminary ecological analysis on the late Quaternary ostracodes from the Heqing Basin, Yunnan. Acta Micropalaeontologica Sinica, 2002, 19(2): 144-156.
[ 彭金兰. 云南鹤庆晚第四纪介形类生态特征初探. 微体古生物 学报, 2002, 19(2): 144-156.]

[51] Exploration and Development Research Institute, Qinghai Petroleum Administration, Nanjing Institute of Geology and Palaeontology, Academia Sinica. Tertiary Ostracode Fauna from Qaidam Basin, NW China. Nanjing: Nanjing University Press, 1988. 22-30.
[青海石油管理局勘探开发研究院, 中国科学院南京地质古生物研究所. 柴达木盆地 第三纪介形类动物群. 南京: 南京大学出版社, 1988. 22-30.]

[52] Danielopol D L, Handl M, Yin Y. Benthic ostracods in the prealpine deep lake mondsee, nates on their origin and distribution. In: McKenzie K G, Jones P J (eds.). Ostracod in the Earth and Life Science. Balkema, 1993. 465-479.

[53] Vesper B. Ein Beitrag zur Ostracodenfauna Schleswig-Holsteins. Mitteilungen aus dem hamburgischen Zoologischen Museum und Institut, 1975, 72: 97-108.

[54] Hiller D. Undersuchungen zur Biologie und zur !kologie limnischer Ostracoden aus der Umgebung von Hamburg. Archiv für Hydrobiologie, Supplement-Band, 1972, 40(4): 400-497.

[55] Zhu L P, Lin X, Li Y F et al. Ostracoda assemblages in core sediments and their environmental significance in a small lake in northwest Tibet, China. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 658-662.

[56] Schwalb A, Locke S M, Dean W E. Ostracode δ18O and δ13C evidence of Helocene environmental changes in the sediments of two Minnesota lakes. Journal of Palaeolimnology, 1995, 14: 281-296.

[57] Zhou Baochun, Zhao Quanhong. Accumulation rates of allochthonous ostracoda and climatic change: A case study of core 17940-2 from the South China Sea. Marine Geology & Quaternary Geology, 2001, 21(4): 55-59.
[ 周保春, 赵泉 鸿. 异地性介形虫堆积速率与古气候变化的相关性: 以南海17940-2 柱状样为例. 海洋地质与第四纪地质, 2001, 21(4): 55-59.]

[58] Stuiver M. Climate versus changes in 13C content of the organic component of lake sediments during the Quaternary. Quaternary Research, 1975, 5: 251-262.

[59] Krishnamurthy R V, Bhattacharya S, Sheela K. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India. Nature, 1986, 323: 150-152.

[60] Meyers P A. Preservation of elemental and isotopic sources identification of sedimentary organic matter. Chemical Geology, 1994, 114(3-4): 289-302.