植物生态

1982-2003 年内蒙古植被带 和植被覆盖度的时空变化

展开
  • 北京大学城市与环境学院,地表过程分析与模拟教育部重点实验室,北京100871
陈效逑(1958-),男,北京市人,博士,教授,主要从事植物物候学和气候变化响应的研究。 E-mail: cxq@pku.edu.cn

收稿日期: 2008-07-09

  修回日期: 2008-10-29

  网络出版日期: 2009-01-25

基金资助

国家自然科学基金项目(40671028;40371042)

Spatial and Temporal Variations of Vegetation Belts and Vegetation Cover Degrees in Inner Mongolia from 1982 to 2003

Expand
  • College of Urban and Environmental Sciences,MOE Laboratory for Earth Surface Processes,Peking University, Beijing 100871,China

Received date: 2008-07-09

  Revised date: 2008-10-29

  Online published: 2009-01-25

Supported by

National Natural Science Foundation of China, No.40671028;No.40371042

摘要

利用内蒙古地区1982-2003 年遥感归一化差值植被指数(NDVI) 数据, 对植被带进行了 分时段的划分, 并以典型草原植被带为例, 分析植被覆盖度时空变化及其与水热因子的关系。 结果表明: 在整个研究期间, 典型草原带的面积呈增加的趋势, 荒漠草原带的面积呈减少的 趋势, 森林带、森林草原带和荒漠带的面积趋势变化不明显。总体上看, 从时段1 (1982- 1987 年) 到时段2 (1988-1992 年) 植被带进化演变的面积占优势, 从时段2 (1988-1992 年) 到时段3 (1993-1998 年) 进化和退化演变的面积相当, 从时段3 (1993-1998 年) 到 时段4 (1999-2003 年) 退化演变的面积占优势。在典型草原带内, 多年平均植被覆盖度具有明显的季节变化, 从5 月上半月返青开始到8 月下半月达到年最大值, 其空间演进以大兴 安岭两翼为中心, 逐渐向东南的西辽河平原和向西的乌兰察布高原扩展。前期降水量与覆盖 度季节增量年际变化之间呈正相关, 显著正相关的区域位于锡林郭勒高原西部和乌兰察布高原, 而气温与覆盖度季节增量年际变化的相关一般不显著。典型草原年最大覆盖度线性趋势 降低与升高的面积分别占52.6%和47.4%, 其中, 呼伦贝尔高原西部边缘以及大兴安岭山麓 两侧的年最大覆盖度呈显著降低的趋势, 而西辽河平原西南部和努鲁儿虎山东段的年最大覆 盖度呈显著升高的趋势。年降水量是影响年最大覆盖度的主要因子, 而年均温对年最大覆盖度的影响不明显。

本文引用格式

陈效逑,王恒 . 1982-2003 年内蒙古植被带 和植被覆盖度的时空变化[J]. 地理学报, 2009 , 64(1) : 84 -94 . DOI: 10.11821/xb200901009

Abstract

The Normalized Difference Vegetation Index (NDVI) data in Inner Mongolia during 1982 to 2003 were used to classify the vegetation belts in four time periods and reveal spatial shifts of the vegetation belts between two sequential periods. Then, we analyzed the spatial and temporal variations of the vegetation cover degree and its relation to thermal-moisture factors taking the tpical steppe belt as an example. During the study period, the area of the typical steppe belt showed an increscent tendency, whereas the area of the desert steppe belt indicated a decreasing tendency. Otherwise, areas of the forest belt, the forest steppe belt and the desert belt did not represent any apparent tendency. Generally speaking, an evolution succession of vegetation belts was dominant during period 1 (1982-1987) to period 2 (1988-1992), whereas a degradation succession of vegetation belts (following succession orders of forest→forest steppe→typical steppe→desert steppe→desert) was dominant during period 3 (1993-1998) to period 4 (1999-2003). In between, evolution and degradation successions of vegetation belts were counterbalanced during period 2 (1988-1992) to period 3 (1993-1998). A significantly positive correlation appeared in the western part of the Xilingol Tableland and the Ulanqab Tableland. In contrast to precipitation, the correlation between the vegetation cover degree increment and air temperature was less significant. From 1982 to 2003, areas with decreasing and increasing linear trends of the annual maximum vegetation cover degree accounted for 52.6% and 47.4% of the entire Inner Mongolia, respectively, of which significantly decreasing trends appeared at the western edge of the Hulun Buir Tableland and the both sides of the Da Hinggan Mountains.

参考文献


[1] Chen X Q, Hu B, Yu R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 2005, 11: 1118-1130.

[2] Chen Xiaoqiu, Yu Rong. Spatial and temporal variations of the vegetation growing season in warm-temperate eastern China during 1982 to 1999. Acta Geographica Sinica, 2007, 62(1): 41-51.
[陈效逑, 喻蓉. 1982-1999 年我国东部暖温带植被生长季节的时空变化. 地理学报, 2007, 62(1): 41-51.]

[3] Piao Shilong, Fang Jingyun. Seasonal changes in vegetation activity in response to climate changes in China between 1982 and 1999. Acta Geographica Sinica, 2003, 58(1): 119-125.
[朴世龙, 方精云. 1982-1999 年我国陆地植被活动对 气候变化响应的季节差异. 地理学报, 2003, 58(1): 119-125.]

[4] The Integrated Investigation Team in Inner Mongolia and Ningxia, CAS. Vegetation of Inner Mongolia. Beijing: Science Press, 1985.
[中国科学院内蒙古宁夏综合考察队. 内蒙古植被. 北京: 科学出版社, 1985.]

[5] Ye Duzheng (ed.) A Preliminary Study on Global Change in China (I). Beijing: China Meteorological Press, 1992. 13-14.
[叶笃正主编. 中国的全球变化预研究(I). 北京: 气象出版社, 1992. 13-14.]

[6] Tucker C J. Red and photographic infrared linear combination for monitoring vegetation. Remote Sensing of Environment, 1979, 8: 127-150.

[7] Tucker C J, Townshend J R G. African land-cover classification using satellite data. Science, 1985, 227: 369-374.

[8] Myneni R B, Keeling C D, Tucker C J et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386: 698-702.

[9] Yang Yuanhe, Piao Shilong. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Journal of Plant Ecology, 2006, 30: 1-8.
[杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关 系. 植物生态学报, 2006, 30: 1-8.]

[10] Ehrlich D, Estes J E, Singh A. Applications of NOAA-AVHRR 1km data for environmental monitoring. International Journal of Remote Sensing, 1994, 15: 145-161.

[11] Yan Hao, Wang Changyao, Niu Zheng et al. Bio-implication of principal component analysis to land cover using multitemporal AVHRR data. Remote Sensing Technology and Application, 2001, 16: 209-213.
[ 延昊, 王长耀, 牛铮 等. 多时相NOAA-AVHRR 数据主成分分析的生物学意义. 遥感技术与应用, 2001, 16: 209-213.]

[12] Sheng Yongwei, Chen Weiying, Xiao Qianguang. Macro-classification of vegetation in China using meteorological satellite vegetation index. Chinese Science Bulletin, 1995, 40: 68-71.
[盛永伟, 陈维英, 肖乾广. 利用气象卫星植被指 数进行我国植被的宏观分类. 科学通报, 1995, 40: 68-71.]

[13] Li Xiaobing, Shi Peijun. Research on regulation of NDVI change of Chinese primary vegetation types based on NOAA/AVHRR data. Acta Botanica Sinica, 1999, 41: 314-324.
[李晓兵, 史培军. 基于NOAA/AVHRR 数据的中国主 要植被类型NDVI 变化规律研究. 植物学报, 1999, 41: 314-324.]

[14] Li Junxiang, Da Liangjun, Wang Yujie et al. Vegetation classification of East China using multi-temporal NOAA-AVHRR data. Journal of Plant Ecology, 2005, 29: 436-443.
[ 李俊祥, 达良俊, 王玉洁等. 基于 NOAA-AVHRR 数据的中国东部地区植被遥感分类研究. 植物生态学报, 2005, 29: 436-443.]

[15] Mao Fei, Hou Yingyu, Tang Shihao et al. Classification and dynamic changes of grasslands in northern Tibet based on recent 20 years satellite data. Chinese Journal of Applied Ecology, 2007, 18: 1745-1750.
[毛飞, 侯英雨, 唐世浩等. 基于近20 年遥感数据的藏北草地分类及其动态变化. 应用生态学报, 2007, 18: 1745-1750.]

[16] Institute of Botany, CAS. Vegetation Map of China (1:4000000). Beijing: China Cartographic Publishing House, 1979.
[中国科学院植物研究所. 中国植被图(1:4000000). 北京: 中国地图出版社, 1979.]

[17] Pan Jiangang, Zhao Wenji, Gong Huili. The research of remote sensing image classification methods. Journal of Capital Normal University (Natural Science Edition), 2004, 25: 86-91.
[潘建刚, 赵文吉, 宫辉力.遥感图像分类方法的研究. 首都师范大学学报(自然科学版), 2004, 25: 86-91.]

[18] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 1998, 19: 1533-1543.

[19] Fang Jingyun, Piao Shilong, He Jinsheng et al. Activity of vegetation in China has been augmented in recent 20 years. Science in China (Series C), 2003, 33: 161-173.
[方精云, 朴世龙, 贺金生等. 近20 年来中国植被活动在增强. 中国 科学(C 辑), 2003, 33: 554-565.]

[20] Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and Apar assessment. Remote Sensing of Environment, 1991, 35: 161-173.

[21] Choudhury B J, Nizam U A, Sherwood B I et al. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment, 1994, 50: 1-17.

[22] Chen Jin, Chen Yunhao, He Chunyang et al. Sub-pixel model for vegetation fraction estimation based on land cover classification. Journal of Remote Sensing, 2001, 5: 416-423.
[陈晋, 陈云浩, 何春阳等. 基于土地覆盖分类的植被覆 盖率估算亚像元模型与应用. 遥感学报, 2001, 5: 416-423.]

[23] Li Xiaobing, Chen Yunhao, Shi Peijun et al. Detecting vegetation fraction coverage of typical steppe in northern China based on multi-scale remotely sensed data. Acta Botanica Sinica, 2003, 45: 1146-1156.

[24] Zhang Jun, Ge Jianping, Guo Qingxi. The relation between the change of NDVI of the main vegetational type and climatic factors in the northeast of China. Acta Ecologica Sinica. 2001, 21: 522-527.
[张军, 葛剑平, 国庆喜. 中国东北地区主要植被类型NDVI 变化与气候因子的关系. 生态学报, 2001, 21: 522-527.]

[25] Nezlina N P, Kostianoyb A G, Li B L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. Journal of Arid Environments, 2005, 62: 677- 700.

[26] Li Xia, Li Xiaobing, Chen Yunhao et al. Temporal responses of vegetation to climate variables in temperate steppe of northern China. Journal of Plant Ecology, 2007, 31: 1054-1062.
[李霞, 李晓兵, 陈云浩等. 中国北方草原植被对气象 因子的时滞响应. 植物生态学报, 2007, 31: 1054-1062.]

[27] Chen Xiaoqiu, Zhou Meng, Zheng Ting et al. Examining seasonal variations of Leymus chinensis photosynthetic rates in the Hulunbeier Grassland. Acta Ecologica Sinica, 2008, 28: 2003-2012.
[陈效逑, 周萌, 郑婷等. 呼伦贝尔草原羊 草光合速率的季节变化. 生态学报, 2008, 28: 2003-2012.]

[28] Chen Xiaoqiu, Zheng Ting. Spatial pattern of aboveground biomass and its climatic attributions in typical steppe of Inner Mongolia. Scientia Geographica Sinica, 2008, 28: 369-374.
[陈效逑, 郑婷. 内蒙古典型草原地上生物量的空间 格局及其气候成因分析. 地理科学, 2008, 28: 369-374.]

[29] Goward S N and Prince S D. Transient effects of climate on vegetation dynamics: Satellite observations. Journal of Biogeography, 1995, 22: 549-563.

[30] Yang W, Yang L, Merchant J W. An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, U.S.A. International Journal of Remote Sensing, 1997, 18(10): 2161-2180.

[31] Yahdjian L, Sala O E. Vegetation structure constrains primary production response to water availability in the Patagonian Steppe. Ecology, 2006, 87(4): 952-962.

文章导航

/