西部地理环境

近45 年青藏高原土壤温度的变化特征分析

展开
  • 藏北高原冰冻圈特殊环境与灾害国家野外科学观测研究站, 中国科学院寒区旱区环境与工程研究所, 兰州730000
张文纲(1977-), 男, 博士, 主要从事多年冻土与气候关系研究。E-mail: zhangwg@lzb.ac.cn

收稿日期: 2008-06-26

  修回日期: 2008-09-25

  网络出版日期: 2008-11-25

基金资助

国家自然科学基金项目(40471026); 国家基金委“西部重大计划”面上项目(90302006); 中国科学院知识创新工程重大项目(220014-03); 国家重点基础研究发展计划(973 计划) (2005CB422003)

Variation Characteristics of Soil Temperature over Qinghai-Xizang Plateau in the Past 45 Years

Expand
  • The National Field Station for Scientific Observation of Cryosphere Special Environment and Disaster over the North of Qinghai-Tibet Plateau, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China

Received date: 2008-06-26

  Revised date: 2008-09-25

  Online published: 2008-11-25

Supported by

National Natural Science Foundation of China, No. 40471026; National Fund for "Western Major Plan" Broadly Item, No.90302006; Knowledge Innovation Project of CAS, No.220014-03; The National Basic Research Program (973 Program), No.2005CB422003

摘要

利用青藏高原60 个气象站1960-2005 年的土壤温度观测资料, 采用Mann-Kendall 法和功率谱方法对不同深度土壤温度的时间变化进行趋势突变和周期检验, 并以主成分方法考察 其空间分布特征。分析结果发现青藏高原浅层土壤温度自1970 年以来升高趋势明显, 1969-1970 年为明显的突变点; 40~320 cm 的深层土壤温度存在3.25 年的显著周期变化; 浅 层土壤温度空间特征则主要体现为全区一致型和南北反向变化型。同时以浅层土壤温度梯度 (10~20 cm) 的变化特征讨论了青藏高原地气间能量的交换关系以及浅层土壤温度梯度对高原 多年冻土的响应, 认为高原地气温差和浅层土壤温度梯度之间存在一种涨落机制, 体现的是 高原地气间的耗散结构关系; 而浅层土壤温度梯度分布特征对高原多年冻土有明显的响应。

本文引用格式

张文纲,李述训,庞强强 . 近45 年青藏高原土壤温度的变化特征分析[J]. 地理学报, 2008 , 63(11) : 1151 -1159 . DOI: 10.11821/xb200811004

Abstract

The soil temperature data of 60 meteorological stations on the Qinghai-Xizang Plateau from 1960 to 2005 were used to analyze the time evolution tendency and spatial distribution using Mann-Kendall test, power spectral analysis and principal component analysis methods. The results show that the surface soil temperature of most of the stations on the Qinghai-Xizang Plateau has a significantly increasing trend in the last 45 years, and the abrupt changes are detected from 1969 to 1970. The soil temperature at depths from 40 to 320 cm shows a 3.25a cycle variation, also the spatial features of surface soil temperature was mainly reflected as a coincident type in the whole region and a reverse changing type in north-south direction. At the same time discussion on the variation of surface soil temperature gradient (10 to 20 cm) indicated that there is a rise-fall mechanism between the surface soil temperature gradient and the difference between ground soil and air temperature, indicating that there may be a relationship of dissipative structures between the atmosphere and ground surface on the Tibetan Plateau. In addition, the spatial pattern of surface soil temperature gradient reflects clearly the distribution of permafrost on the Qinghai-Xizang Plateau.

参考文献


[1] Tang Maocang, Li Cunqiang. On the facts of that the Qinghai-Xizang Plateau was the source region of climatic variation. In: The Proceedings of the First Symposium on the Qinghai-Xizang Plateau. Beijing: Science Press, 1992. 42-48.
[汤懋苍, 李存强. 关于“青藏高原是气候启动区” 的分析事实. 中国青藏高原研究会第一届学术讨论会论文 集. 北京: 科学出版社, 1992. 42-48.]

[2] Pavlov A V. Current change of climate and permafrost in the Arctic and sub-Arctic of Russia. Permafrost and Periglacial Processes, 1994, 5: 101-110.

[3] Zhou Youwu, Guo Dongxin, Cheng Guodong et al. Geocryology in China. Beijing: Science Press, 2000. 14-19.
[周幼吾, 郭东信, 程国栋等. 中国冻土. 北京: 科学出版社, 2000. 14-19.]

[4] Nelson F E. (Un)frozen in Time. Science, 2003, 299: 1673-1675.

[5] Lunardini V J. Climatic warming and the degradation of warm permafrost. Permafrost and Periglacial Processes, 1996, 7 (4): 311-320.

[6] Jin Huijun, Li Shuxun, Wang Shaoling. Impacts of climatic change on permafrost and cold regions environments in China. Acta Grographica Sinica, 2000, 55(2): 161-173.
[金会军, 李述训, 王绍令. 气候变化对中国多年冻土和寒区环 境的影响. 地理学报, 2000, 55(2): 161-173.]

[7] Wang Shaoling, Zhao Lin, Li Shuxun. Study on thermal balance of asphalt pavement and roadbed stability in permafrost regions of the Qinghai-Tibetan Highway. Journal of Glaciology and Geocryology, 2001, 23(2): 111-118.
[王绍令, 赵林, 李述训. 青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究. 冰川冻土, 2001 , 23(2): 111-118.]

[8] Wu Qingbai, Li Xin, Li Wenjun. The response model of permafrost along the Qinghai-Tibetan Highway under climate change. Journal of Glaciology and Geocryology, 2001, 23(1): 1-6.
[吴青柏, 李新, 李文君. 全球气候变化下青藏公路沿 线冻土变化响应模型的研究. 冰川冻土, 2001, 23(1): 1-6.]

[9] Nan Zhuotong, Li Shuxun, Liu Yongzhi. Mean annual ground temperature distribution on the Tibetan Plateau: Permafrost distribution mapping and further application. Journal of Glaciology and Geocryology, 2002, 24(2): 142-148.
[南卓铜, 李述训, 刘永智. 基于年平均地温的青藏高原冻土分布制图及应用. 冰川冻土, 2002, 24(2): 142-148.]

[10] Li Xin, Cheng Guodong. Review on the interaction models between climatic system and frozen soil. Journal of Glaciology and Geocryology, 2002, 24(3): 315-321.
[李新, 程国栋. 冻土气候关系模型评述. 冰川冻土, 2002, 24(3): 315-321.]

[11] Li Shuxun, Cheng Guodong, Guo Dongxin. The future thermal regime of numerical simulating permafrost on Qinghai-Tibet Plateau, China, under climate warming. Science in China (Series D), 1996, 39(4): 434-441.
[李述训, 程 国栋, 郭东信. 气候转暖条件下青藏高原多年冻土变化趋势. 中国科学(D 辑), 1996, 39(4): 434-441.]

[12] Wei Zhigang, Huang Ronghui, Dong Wenjie. Interannual and interdecadal variations of air temperature and precipitation over the Tibetan Plateau. Chinese Journal of Atmospheric Sciences, 2003, 27(2): l57-170.
[韦志刚, 黄荣 辉, 董文杰. 青藏高原气温和降水的年际和年代际变化. 大气科学, 2003, 27(2): l57-170.]

[13] Wang Shaoling. Study of permafrost degradation in the Qinghai-Xizang Plateau. Advance in Earth Sciences, 1997, 12 (2): 164-167.
[王绍令. 青藏高原冻土退化研究. 地球科学进展, 1997, 12(2): 164-167.]

[14] Wang Shaoling. An approach on permafrost degradation and environmental problems in the Tibetan Plateau. In: Proceedings of the Fifth Chinese Conference on Glaciology and Geocruology (Vol. 1). Lanzhou: Gansu Culture Press, 1996. 11-17.
[王绍令. 冻土退化与青藏高原冻土环境问题探讨. 第五届全国冰川冻土大会论文集. 兰州: 甘肃文化 出版社, 1996. 11-17.]

[15] Wang Shaoling, Zhao Xinmin. Analysis of the ground temperature monitored in permafrost regions on Tibetan Plateau. Journal of Glaciology and Geocryology, 1999, 21(2): 159-163.
[王绍令,赵新民. 青藏高原多年冻土地区低温监测结 果分析. 冰川冻土, 1999, 21(2): 159-163.]

[16] Zhu Linnan, Wu Ziwang, Liu Yongzhi. Permafrost degradation in eastern regions of Qinghai-Xizang Plateau. Journal of Glaciology and Geocryology, 1995, 17(2): 120-124.
[朱林楠, 吴紫汪, 刘永智. 青藏高原东部的冻土退化. 冰川冻土, 1995, 17(2): 120-124.]

[17] Wang Chenghai, Dong Wenjie, Wei Zhigang. The feature of seasonal frozen soil in Qinghai-Tibet Plateau. Acta Geographica Sinica, 2001, 56(5): 523-531.
[王澄海, 董文杰, 韦志刚. 青藏高原季节性冻土年际变化的异常特征. 地理学报, 2001, 56(5): 523-531.]

[18] Cheng Guodong. Recent development of geocryological study in China. Acta Geographica Sinica, 1990, 45 (2): 220-224.
[程国栋. 我国冻土学研究最新进展. 地理学报, 1990, 45(2): 220-224.]

[19] Wu Shaohong, Yin Yunhe, Zheng Du et a1. Climate changes in the Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005, 60(1): 3-l1.
[吴绍洪, 尹云鹤, 郑度等. 青藏高原近30 年气候变化趋势. 地理学报, 2005, 60(1): 3-11.]

[20] Du Jun. Climatic fiend of rainfall over Tibetan Plateau from 1971 to 2000. Acta Geographica Sinica, 2004, 59 (3): 375-382.
[杜军. 西藏高原降水变化趋势的气候分析. 地理学报, 2004, 59(3): 375-382.]

[21] Zhang Wengang, Li Shuxun, Wu Tonghua et a1. Changes and spatial patterns of the differences between ground and air temperature over the Qinghai-Xizang Plateau. Journal of Geographical Sciences, 2007, 17(1): 20-32.

[22] Shen Wei. The theory of self-organization and dissipative structures and its application in geology. Geology-geochemistry, 2001, 29(3): 1-7.
[申维. 自组织理论和耗散结构理论及其地学应用. 地质地球化学, 2001, 29 (3): 1-7.]

[23] Li Shude, Cheng Guodong (eds.). Map of Permafrost on Qinghai-Tibet Plateau (1:3000000). Lanzhou: Gansu Culture Press, 1996.
[李树德, 程国栋主编. 青藏高原冻土图(1:3000000). 兰州: 甘肃文化出版社, 1996.]

文章导航

/