水分循环

东江流域实际蒸发量与蒸发皿蒸发量的对比分析

展开
  • 1. 广东海洋大学农学院资源与环境系,广东湛江524088;
    2. 中山大学水资源与环境系,广州510275;
    3. 华南理工大学土木与交通学院,广州510641
谢平(1968-),女,湖北松滋人,副教授,博士研究生,主要从事水资源方面的研究。 E-mail: xiep68@gdou.edu.cn

收稿日期: 2008-10-06

  修回日期: 2008-12-05

  网络出版日期: 2009-03-25

基金资助

国家自然科学基金重点项目(50839005);广东海洋大学自然科学基金项目(0812073)

Comparison of Actual Evapotranspiration and Pan Evaporation

Expand
  • 1. Agricultural College of Guangdong Ocean University,Zhanjiang 524088,Guangdong,China;
    2. Department of Water Resources and Environment,Sun Yat-sen University,Guangzhou 510275,China;
    3. School of Civil and Transportation Engineering,South China University of Technology,Guangzhou 510641,China

Received date: 2008-10-06

  Revised date: 2008-12-05

  Online published: 2009-03-25

Supported by

key Subjects of National Natural Science Foundation of China,No.50839005;Natural Science Foundation of Guangdong Ocean University,No. 0812073

摘要

利用东江流域1956-2003 年的水文、气象资料, 用趋势线分析、集对分析和方差分析方法对年实际蒸发量和年蒸发皿蒸发量的变化特征及其与气象因子的关系进行对比分析, 揭 示其相同与相异之处。结果表明: 实际蒸发量与蒸发皿蒸发量都有减少的趋势, 但蒸发皿蒸 发量减少的趋势显著, 实际蒸发量减少的趋势不显著; 两者都在20 世纪90 年代出现最小值; 实际蒸发量与蒸发皿蒸发量存在不确定相关关系和弱的负相关关系。温度与实际蒸发量、蒸 发皿蒸发量都为不确定相关关系; 风速与蒸发皿蒸发量为正相关, 与实际蒸发量为不确定相 关关系; 随降水量的变化, 两种蒸发量的变化相反, 即一个增加而另一个减小; 随日照时数 的变化, 趋势线分析与集对分析都反映出两者有相反的变化, 通过年景分析, 随日照时数的增加, 蒸发皿蒸发量增加, 实际蒸发量先增加后减小。年日照时数偏多、降水量偏少时, 蒸 发皿蒸发量显著偏多; 年日照时数为中等、降水量偏多时, 实际蒸发量最大, 但没有达到显 著水平。

本文引用格式

谢平,陈晓宏,王兆礼,谢毅文 . 东江流域实际蒸发量与蒸发皿蒸发量的对比分析[J]. 地理学报, 2009 , 64(3) : 270 -277 . DOI: 10.11821/xb200903002

Abstract

Based on the climate and hydrological data of Dongjiang River Basin covering the period 1956-2003, the changes of actual evapotranspiration and pan evaporation and their relationship with climatic factors are analyzed to reveal the similarity and dissimilarity. The results show that there is a decreasing trend in both actual evapotranspiration and pan evaporation, with an insignificant decrease in the former while a significant decrease in the latter. Both of the minimum values of evaporation occur in the 1990s. There is an uncertain and weak negative correlation between actual evapotranspiration and pan evaporation. There is an uncertain relationship between air temperature and actual evapotranspiration and pan evaporation. Wind speed presents a positive correlation with pan evaporation, but an uncertain correlation with actual evapotranspiration. The change of rainfall results in the opposite changes with the two kinds of evapotranspiration, if one increases, the other one decreases. Sunlight radiation causes the opposite changes in trendline analysis and set pair analysis. Through climate patterns analysis, pan evaporation increases with radiation, and actual evapotranspiration increases first and then decreases. The pan evaporation is much more significant than the other climate patterns that the sunlight is more than normal, and the precipitation is less than normal. The actual evapotranspiration is much more than other climate patterns in climate patterns that the sunlight is at the medium level, and the precipitation is more than normal.

参考文献


[1] IPCC. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the International Panel on Climate Change. In: Hongbton J T (ed.). New York: Cambridge University Press, 2001. 193-227.

[2] Peterson T C, Golnbev V S, Groisman P Y. Evaporation losing it strength. Nature, 1995, 377: 687-688.

[3] Brutsaert W, Parlange M B. Hydrological cycle explain the evaporation paradox. Nature, 1998, 396: 30-31.

[4] Roderick M L. The cause of decreased pan evaporation over the past 50 years. Science, 2002, 298: 1410-1411.

[5] Cohen S, Stanhill G E. Evaporative climate changes at Bet-Dagan Isreal 1964-1998. Agricultural and ForestMeteorology, 2002, 111(2): 83-91.

[6] Zuo Hongchao, Li Dongliang, Hu Yijiao. The trend change of climate and pan evaporation and its relationship in recent 40 years in China. Chinese Science Bulletin, 2005, 50(11): 1125-1130.
[左洪超, 李栋梁, 胡隐樵等. 近40 a 中国气候 变化趋势及其同蒸发皿观测的蒸发量变化的关系. 科学通报, 2005, 50(11): 1125-1130.]

[7] Guo Jun, Ren Guoyu. Recent change of pan evaporation and possible climate factors over the Huang-Huai-Hai watershed, China. Advances in Water Science, 2005, 16(5): 666-672.
[郭军, 任国玉. 黄淮海流域蒸发量的变化及其原 因分析. 水科学进展, 2005, 16(5): 666-672.]

[8] Wang Yanjun, Jiang Tong, Xu Chongyu et al. Trend of evapotranspiration in the Yangtze River Basin in 1961-2000. Advance in Climate Change Research, 2005, 1(3): 99-104.
[王艳君, 姜彤, 许崇育等. 长江流域1961-2000 年蒸发量 变化趋势研究. 气候变化研究进展, 2005, 1(3): 99-104.]

[9] Ohmura A, Wild M. Is the hydrological cycle accelerating? Science, 2002, 298: 1345-1346

[10] Xie Ping, Chen Xiaohong, Wang Zhaoli et al. Change of pan evaporation and impact climate factors over Dongjiang river basin. Tropical Geography, 2008, 28(4): 306-310.
[谢平, 陈晓宏, 王兆礼等. 东江流域蒸发皿蒸发量及其影响 因子的变化特征分析. 热带地理, 2008, 28(4): 306-310.]

[11] Gao Ge, Chen Deliang, Xu Chongyu et al. Trend of estimated actual evapotranspiration over China during 1960-2000. Journal of Geophysical Research, 2007, 112, D11120, doi: 10.1029/2006JD008010.

[12] Zhan C S, Xia J, Li Z L et al. Modelling the spatial distribution of actual terrestrial evapotranspiration using a hydrological and meteorological approach. In: Frank S et al. (eds.) Regional Hydrological Impacts of Climatic Change: Hydroclimatic Variability. IAHS Publ., 2005, 296: 283-290.

[13] Kemdall M G. Rank Correlation Method. Landon: Griffin, 1975. 23-25.

[14] Zhao Keqin, Xuan Aili. Set pair theory: A new theory method of non-define and its applications. System Engineering, 1996, 14(1): 18-23.
[赵克勤, 宣爱理. 集对论: 一种新的不确定性理论方法与应用. 系统工程, 1996, 14(1): 18-23.]

文章导航

/