气候变化

中国粮食单产对气候变化的敏感性评价

展开
  • 1. 环境保护部环境与经济政策研究中心,北京100029;
    2. 北京师范大学地理学与遥感科学学院,北京100875;
    3. 中国科学院地理科学与资源研究所,北京100101;
    4. 中国人民大学信息学院,北京100872
殷培红, 博士, 副研究员. 中国地理学会会员(S110002942M)。E-mail: yinpeihong@163.com

收稿日期: 2009-07-23

  修回日期: 2010-01-31

  网络出版日期: 2010-05-25

基金资助

国家科技支撑计划(2008BAK50B07-03)

Identification of the Susceptible Regions to Climate Change Impact on Grain Yield Per Unit Area in China

Expand
  • 1. Policy Research Center for Environment and Economy; Ministry of Environmental Protection; Beijing 100029; China; 
    2. School of Geography; Beijing Normal University; Beijing 100875; China; 
    3. Institute of Geographic Sciences and Natural Resources Research; CAS; Beijing 100101; China; 
    4. School of Information; Renmin University of China; Beijing 100872; China

Received date: 2009-07-23

  Revised date: 2010-01-31

  Online published: 2010-05-25

Supported by

The National Key Technology R&D Program, No.2008BAK50B07-03

摘要

选取农业政策相对稳定的1985-2004年,全国2075个县(市)的粮食单产数据和全国730个基础气象站点的逐月气温、降水数据,运用协整分析方法提高了气候变化敏感区的辨识能力,得到以下结论:(1)典型相关分析结果说明4-10月温度,其次5-9月降水是影响中国粮食单产空间分异的主导因素;(2)在240个单产趋势增加显著地区中,识别出137个地区的单产趋势增长与4-10月温度变化存在长期互动关系,主要分布在地势阶梯转换带以及长江沿线等重要地理过渡带上;(3)在数据有效的328个地区中,有41.6%的地区粮食单产波动项对4-10月温度和5-9月降水两个气候波动项都敏感,主要集中分布在:①夏季风区与非季风区分界线和胡焕庸人口地理线之间的地区,常年缺粮区占优势,秦岭以北单产波动系数很高,②江西、浙江、福建是余粮区和常年缺粮区并存、单产波动变化很小的地区,③吉林、辽宁东部、河南、安徽,粮食播种总面积的波动系数低,单产波动系数较全国高,主要为受气候波动变化影响而产量不稳定的主要余粮区,这说明气候变化背景下中国粮食供应稳定性下降。

本文引用格式

殷培红; 方修琦; 张学珍; 戚发全 . 中国粮食单产对气候变化的敏感性评价[J]. 地理学报, 2010 , 65(5) : 515 -524 . DOI: 10.11821/xb201005001

Abstract

Based on the statistic agricultural data with a county resolution and monthly mean temperature and precipitation data at 730 national basic weather stations for the period 1985-2004, it is focused in this paper to identify the susceptible regions to climate change on grain yield per unit. The following main conclusions can be drawn. (1) The linearity trends of grain yield per unit sown-area have increased remarkably in most regions since 1985, especially in northern China. Canonical Correlation Analysis (CCA) reveals that this kind of spatial pattern has high correlation with the change of temperature from April to October (α = 0.01). The impacts of precipitation change are less than those of temperature change in the corresponding period. Most notable yield-increased regions sensitive to the temperature change in April to October are located at the climate transitional zones in China. The fluctuation of temperature, as well as that of precipitation, plays important roles in changes of grain yield per unit sown-area. (2) 137 in 240 districts where the linearity trends of grain yield per unit sown-area are significantly (α = 0.05) subject to the changes of temperature from April to October analyzed by cointergration (EG-test), and most of them are located in the transitional zones of topography and the Changjiang River Valley. (3) There are 41.6% of valid statistic districts where grain yield is subject to both the changes of temperature from April to October and precipitation from May to September analyzed by cointergration (EG-test). Most of them are distributed in the three kinds of regions, with the largest one lying between the borderline of summer monsoon and the sideline of Chinese population geography from the Heihe City in Heilongjiang Province to Tengchong City in Yunnan Province, in which food shortage regions are superior in numbers; grain yield per unit shows high fluctuation with the stable amount of sown-area in Jilin, eastern Liaoning, Henan and Anhui, of which the amount of grain production is susceptible to climate change and are main grain-surplus regions in China. It shows that the stability of food production in China has declined in these regions over recent 20 years due to climate change in the corresponding period.

参考文献

[1] Xie Yun. Analysis of sensitivity of crop yields to climate resource function in China. Resources Science, 1999, 21(6): 13-17. [谢云. 中国粮食生产对气候资源波动响应的敏感性分析. 资源科学, 1999, 21(6): 13-17.]
[2] Xiong Wei, Xu Yinlong, Lin Erda et al. Regional simulation of maize yield under IPCC SRES A2 and B2 scenarios. Agricultural Meteorology, 2005, 26(1):11-15. [熊伟, 许吟隆, 林而达等. IPCC SRES A2 和B2 情景下我国玉米产量变 化模拟. 中国农业气象, 2005, 26(1): 11-15.]
[3] Liu Wenquan, Lei Xiangjie. A study in the index of climate vulnerability of agricultural production and its weight options. Journal of Shaanxi Meteorology, 2002, (3): 32-35. [刘文泉, 雷向杰. 农业生产的气候脆弱性指标及权重的确 定. 陕西气象, 2002, (3): 32-35.]
[4] Liu Wenquan, Wang Futang. A preliminary study in climate vulnerability of agricultural production in Chinese Loess Plateau. Climatic and Environmental Research, 2003, 8(1): 91-100. [刘文泉, 王馥棠. 黄土高原农业生产气候脆弱性的 初步研究. 气候与环境研究, 2003, 8(1): 91-100.]
[5] Liu Lanfang, Liu Shenghe, Liu Peilin et al. Synthetic analysis and quantitative estimation of the agricultural vulnerability to drought disaster in Hunan Province. Journal of Natural Disasters, 2002, 11(4): 78-83. [刘兰芳, 刘盛和, 刘沛林等. 湖南省农业旱灾脆弱性综合分析与定量评价. 自然灾害学报, 2002, 11(4): 78-83.]
[6] Shang Yanrui. Agricultural drought disaster vulnerability assessment and the establishment of the correlation. Journal of Hebei Normal University: Natural Science, 1999, 23(3): 420-426. [彦蕊. 农业旱灾风险与脆弱性评估及其相关关系的 建立. 河北师范大学学报: 自然科学版, 1999, 23(3): 420-426.]
[7] [IPCC. Technical Summary: Climate Change 2001: Impacts, Adaptation, and Vulnerability [O/R]. 2001. http://www.ipcc. ch/pub/wg3TARtechsum.pdf.]
[8] [Watson R T, Zinyowera M C, Moss R H. IPCC. The Regional Impacts of Climate Change: An Assessment of Vulnerability. UK: Cambridge University Press, 1997.]
[9] Ding Yihui; Ren Guoyu; Shi Guangyu et al. National Assessment Report of Climate Change (I): Climate change in China and its future trend. Advances in Climate Change Research, 2006, 2(1): 3-8. [丁一汇, 任国玉, 石广玉等. 气候变 化国家报告(I): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1): 3-8.]
[10] Cheng Yannian. A study in the relations between agro-meteorological conditions and Fluctuations in grain yield in China .Agricultural Sciences in China, 1987 Album. [程延年. 我国粮食产量波动与农业气象条件的关系. 中国农业科 学, 1987 年专辑.]
[11] Wang Yan. Time Series Analysis. Beijing: China Renmin University Press, 2005. [王燕. 应用时间序列分析. 北京: 中 国人民大学出版社, 2005.]
[12] Chinese Academy of Agricultural Sciences. Chinese Agricultural Meteorology. Beijing: China Agriculture Publishing House, 1999. [中国农业科学院. 中国农业气象. 北京: 中国农业出版社, 1999.]
[13] Cheng Deyu. Agricultural Climatology. Beijing: China Meteorological Press, 1994. [程德瑜. 农业气候学. 北京: 气象 出版社, 1994.]
[14] Zhang Yangcai, He Weixun, Li Shikui. The Introduction to Agro-Meteorological Disasters in China. Beijing: China Meteorological Press, 1991. [张养才, 何维勋, 李世奎. 中国农业气象灾害概论. 北京: 气象出版社, 1991.]
[15] Wu Hongbao, Wu Lei. Methods for Diagnosing and Forecasting Climate Variability. Beijing: China Meteorological Press, 2005. [吴洪宝, 吴蕾. 气候变率诊断和预测方法. 北京: 气象出版社, 2005.]
[16] Zhang Houcan. The Statistics of Psychology and Pedagogy. Beijing: Beijing Normal University Publishing House, 1995. [张厚粲. 心理与教育统计学. 北京: 北京师范大学出版社, 1995.]
[17] Zhu Shengming. An analytical method of the stability of the correlation coefficient and its application. Acta Meteorologica Sinica, 1982, 40(4): 497-501. [朱盛明. 相关系数稳定性分析方法及其应用. 气象学报, 1982, 40(4): 497-501.]
[18] Zhang Yu, Zhao Siqiang. A study in two types of errors of selection of restrictive factors by using of correlation coefficient. Meteorological Monthly, 1992, 18(3): 45-49. [张宇, 赵四强. 利用相关系数进行因子筛选时的两类错误. 气象, 1992, 18(3): 45-49.]
[19] Yin Peihong. Vulnerability assessment on food security in China driven by climate change [D]. Beijing: Beijing Normal University, 2007. [殷培红. 气候变化背景下中国粮食安全脆弱性评价[D]. 北京: 北京师范大学. 2007.]
[20] Lin Erda; Xu Yinlong, Jiang Jinhe et al. National Assessment Report of Climate Change (II): Climate change impacts and adaptation. Advances in Climate Change Research. 2006, 2(2): 51-56. [林而达, 许吟隆, 蒋金荷等. 气候变化国家 报告(II): 气候变化的影响与适应. 气候变化研究进展, 2006, 2(2): 51-56.]
[21] He Chunyan, Xiong Yanhui. An analytical method of time series on interpolation of agro-meteorological series and its applications in trends forecast. Journal of Guangdong Mechanical College, 1994, 12(1): 43-51. [何春燕, 熊燕辉. 时间 序列分析法在资料插补及趋势预报中的应用. 广东机械学院学报, 1994, 12(1): 43-51.]
[22] Xue Fubo, Zhang Wentong, Tian Xiaoyan. The Manual of SAS8.2 Statistical Software. Beijing: Beijing Hope Electronic Press, The Publishing House of Engineer Industry, 2004. [薛富波, 张文彤, 田晓燕. SAS8.2 统计应用教程. 北京: 北京希望电子出版社, 兵器工业出版社, 2004.]

文章导航

/