气候变化

近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测

展开
  • 1. 中国科学院地理科学与资源研究所,北京100101;
    2. 中国科学院研究生院,北京100049
聂勇(1981- ), 博士生。从事自然地理学综合研究与土地利用/覆被变化研究。E-mail: nieyong@126.com

收稿日期: 2009-09-01

  修回日期: 2009-11-18

  网络出版日期: 2010-01-25

基金资助

中国科学院对外合作重点项目(GJHZ0954); 国家重点基础研究发展计划项目(2005CB422006); HKKH Partnership for Ecosystem Management

Monitoring Glacier Change Based on Remote Sensing in the Mt. Qomolangma National Nature Preserve,1976-2006

Expand
  • 1.Institute of Geographic Sciences and Natural Resources Research; Chinese Academy of Sciences; Beijing 100101; China; 
    2.Graduate University of Chinese Academy of Sciences.Beijing 100049; China

Received date: 2009-09-01

  Revised date: 2009-11-18

  Online published: 2010-01-25

Supported by

The External Cooperation Program of the Chinese Academy of Sciences, No.GJHZ0954; National Basic Research Program of China, No.2005CB422006; Institutional Consolidation for the Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex

摘要

利用1976、1988和2006年的3期陆地卫星遥感数据,采用面向对象的解译方法并结合专家知识分类规则自动提取珠穆朗玛峰国家自然保护区(以下简称珠峰保护区)3个时期的冰川信息,并利用遥感、地理信息系统和图谱的方法对冰川时空分布特征和变化及其原因与不确定性进行了分析。结果如下:(1)2006年珠峰保护区内冰川面积为2710.17±0.011km2,为研究区总面积的7.41%,主要分布在研究区南部海拔4700~6800m的高山区;(2)1976-2006年,珠峰保护区冰川持续退缩明显,总面积减少501.91±0.035km2,冰湖扩张迅速(净增加36.88±0.035km2);研究区南坡子流域冰川退缩率(16.79%)高于北坡子流域(14.40%);珠峰保护区冰川以退缩为主,退缩冰川主要分布于海拔4700~6400m,退缩区上限海拔为6600~6700m;(3)1976年以来,气温显著上升和降水减少是冰川退缩的关键因素。

本文引用格式

聂勇; 张镱锂; 刘林山; 张继平 . 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J]. 地理学报, 2010 , 65(1) : 13 -28 . DOI: 10.11821/xb201001003

Abstract

Based on Landsat TM(/MSS) images in 1976,1988 and 2006,glacier extents in the three periods in the Mt.Qomolangma National Nature Preserve(QNNP) have been automatically derived by object-oriented image interpretation method combined with expert knowledge rules and field surveys.Spatial-temporal distribution and changes of glaciers are analyzed with the aid of GIS,RS and Tupu method.Results show that(1) The glacial area at QNNP in 2006,located mainly in the southern high mountain region with elevations of 4700-6800 m,amounted to 2710.17±0.011 km2,about 7.41% of the whole study area;(2) During 1976-2006,glaciers tended to shrink significantly by 501.91±0.035 km2 in total,and glacial lakes expanded rapidly with an increase of 36.88±0.035 km2;the rate of glacier retreat is higher in sub-basins on the southern slope(16.79%) of Himalayas than those on the northern slope(14.40%);(3) Most glaciers retreated,mainly occurred at elevations of 4700-6400 m,and the estimated upper limit of retreated zone is between 6600 m and 6700 m;(4) The temperature rise along with precipitation decrease is considered to be the key factor of glacier retreat in the region.

参考文献

[1] Owen L A, Thackray G, Anderson R S et al. Integrated research on mountain glaciers: Current status, priorities and future prospects. Geomorphology, 2009, 103(2): 158-171.
[2] Gore A. An inconvenient truth. Rodale, Emmaus, 2006: 328p.
[3] IPCC. IPCC Fourth Assessment Report: Climate Change 2007. IPCC, Geneva, Switzerland, 2007.
[4] Bolch T, Buchroithner M, Pieczonka T et al. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology, 2008, 54(187): 592-600.
[5] Haeberli W, Hoelzle M, Paul F et al. Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology, 2007, 46: 150-160.
[6] Lu A X, Yao T D, Liu S Y et al. Glacier change in the Geladandong area of the Tibetan Plateau monitored by remote sensing. Journal of Glaciology and Geocryology, 2002, 24(5): 559-562.
[鲁安新, 姚檀栋, 刘时银等. 青藏高原各拉丹 冬地区冰川变化的遥感监测. 冰川冻土,2002,24(5): 559-562.]
[7] Andreassen L M, Paul F, Kääb A et al. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere, 2008, 2(2): 131-145.
[8] Huggel C, Kääb A, Haeberli W et al. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 2002, 39(2): 316-330.
[9] Liu S Z, Li H X, Yan Y et al. Assessment of glacial lake outburst hazards in Luozha County, Tibet. Journal of Mountain Research, 2003, 21(Sup): 128-132.[刘淑珍, 李辉霞, 鄢燕等. 西藏自治区洛扎县冰湖溃决危险度评价. 山地 学报, 2003, 21(增刊): 128-132.]
[10] Chen X Q, Cui P, Yang Z et al. Risk Assessment of Glacial Lake Outburst in the Poiqu River Basin of Tibet Autonomous Region. Journal of Glaciology and Geocryology, 2007, 29(4): 509-516.[陈晓清, 崔鹏, 杨忠等.喜马拉雅 山中段波曲流域近期冰湖溃决危险性分析与评估. 冰川冻土, 2007, 29(4): 509-516.]
[11] Chen X Q, Cui P, Li Y et al. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology, 2007, 88(3-4): 298-311.
[12] Krishna A P. Snow and glacier cover assessment in the high mountains of Sikkim Himalaya. Hydrological Processes,2005, 19(12).
[13] Liu S Y, Ding Y J, Zhang Y et al. Impact of glacier change on water resources in the Tarim River Basin. Acta Geographica Sinica, 2006, 61(5): 482-490.[刘时银, 丁永建, 张勇等. 塔里木河流域冰川变化及其对水资源影响. 地 理学报, 2006, 61(5): 482-490.]
[14] Qiu J. The third pole. Nature, 2008, 454(7203): 393-396.
[15] Yang W, Yao T D, Xu B Q et al. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau. Chinese Science Bulletin, 2008, 53(16): 2547-2551.
[16] Ren J W, Qin D H, Kang S C et al. Glacier variations and climate warming and drying in the central Himalayas. Chinese Science Bulletin, 2004, 49(1): 65-69.
[17] Yao T D, Pu J C, Tian L D et al. Recent rapid retreat of the Naimona'nyi glacier in southwestern Tibetan Plateau. Journal of Glaciology and Geocryology, 2007, 29(4): 503-508.[姚檀栋, 蒲健辰, 田立德等. 喜马拉雅山脉西段纳木 那尼冰川正在强烈萎缩. 冰川冻土, 2007, 29(4): 503-508.]
[18] Kang S C, Chen F, Ye Q H et al. Glacier retreating dramatically on the Mt. Nyainqentanglha during the last 40 years. Journal of Glaciology and Geocryology, 2007, 29(6): 869-873.[康世昌, 陈锋, 叶庆华等. 1970-2007 年西藏念青唐古 拉峰南、北坡冰川显著退缩. 冰川冻土,2007,29(6): 869-873.]
[19] Ren J W, Qin D H, Jing Z F. Climatic warming causes the glacier retreat in Mt. Qomolangma. Journal of Glaciology and Geocryology, 1998, 20(2): 184-185.[任贾文, 秦大河, 井哲帆. 气候变暖使珠穆朗玛峰地区冰川处于退缩状态. 冰川冻土,1998,20(2): 184-185.]
[20] Duan K Q, Thompson L G, Yao T et al. A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core. Geophysical Research Letters, 2007, 34: L1810.
[21] Thompson L G, Yao T D, Davis M E et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276(5320): 1821-1825.
[22] Geng Z X, Hou S G, Zhang D Q et al. A high-resolution ice core record from Mount Qomolangma since 1844 AD. Journal of Glaciology and Geocryology, 2007, 29(5): 694-703.[耿志新, 侯书贵, 张东启等. 1844 AD以来珠穆朗玛峰 地区大气环境变化高分辨率冰芯记录. 冰川冻土,2007,29(5): 694-703.]
[23] Hou S G, Qin D H, Wake C P et al. Climatological significance of an ice core net-accumulation record at Mt. Qomolangma (Everest). Chinese Science Bulletin, 2000, 45(3): 259-264.
[24] Yang X C, Zhang Y L, Zhang W et al. Climate change in Mt. Qomolangma region since 1971. Journal of Geographical Sciences, 2006, 16(3): 326-336.
[25] Duan K Q, Yao T D, Pu J C et al. Response of monsoon variability in Himalayas to global warming. Chinese Science Bulletin, 2002, 47(21): 1842-1845.
[26] Ye Q H, Zhong Z W, Kang S C et al. Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China. Journal of Mountain Science, 2009, 6(3): 211-220.
[27] Che T, Li X, Mool P K et al. Monitoring glaciers and associated glacial lakes on the east slopes of Mt. Xixabangma from remote sensing images. Journal of Glaciology and Geocryology, 2005, 27(6): 801-805.[车涛, 李新, Mool P K 等. 希夏邦马峰东坡冰川与冰川湖泊变化遥感监测. 冰川冻土, 2005, 27(6): 801-805.]
[28] Ye Q H, Chen F, Yao T D et al. Tupu of glacier variations western Himalayas, in the Mt. Naimona'nyi region, in the last three decades. Journal of Remote Sensing, 2007, 11(4): 511-520.[叶庆华, 陈锋, 姚檀栋等. 近30 年来喜马拉雅山 脉西段纳木那尼峰地区冰川变化的遥感监测研究. 遥感学报, 2007, 11(4): 511-520.]
[29] Liu S Y, Shangguan D H, Ding Y J et al. Glacier variations since the early 20th century in the Gangrigabu range, southeast Tibetan Plateau. Journal of Glaciology and Geocryology, 2005, 27(1): 55-63.[刘时银, 上官冬辉, 丁永建 等. 20 世纪初以来青藏高原东南部岗日嘎布山的冰川变化. 冰川冻土,2005,27(1): 55-63.]
[30] Li Z, Sun W X, Zeng Q Z. Deriving glacier change information on the Xizang (Tibetan) Plateau by integrating RS and GIS techniques. Acta Geographica Sinica, 1999, 54(3): 263-268.[李震, 孙文新, 曾群柱. 综合RS与GIS 方法提取 青藏高原冰川变化信息——以布喀塔格峰为例. 地理学报,1999, 54(03): 263-268.]
[31] Paul F, Kääb A, Haeberli W. Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change, 2007, 56(1-2): 111-122.
[32] Bolch T. Climate change and glacier retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, 2007, 56(1-2): 1-12.
[33] Paul F, Kääb A, Maisch M et al. Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters, 2004, 31(21): L21402.
[34] Cidanlunzhu. Overview of Qomolangma Natioanal Nature Preserve. China Tibetology, 1997, 21(1): 3-22.[次旦伦珠. 珠穆朗玛峰自然保护区概况. 中国藏学, 1997(1): 3-22.]
[35] Zhang W, Zhang Y L, Wang Z F et al. Vegetation change in the Mt. Qomolangma Nature Reserve from 1981 to 2001. Journal of Geographical Sciences, 2007, 17(2): 152-164.
[36] Tibetan Scientific Expedition Team of Chinese Academy of Sciences. Report of scientific expedition in Mt. Qomolangma (Everest) region 1966-1968 (Geography). Beijing: Science Press, 1975.[中国科学院西藏科学考察队. 珠 穆朗玛峰地区科学考察报告1966-1968 (自然地理). 北京: 科学出版社,1975.]
[37] Comprehensive Scientific Expedition Team of Chinese Academy of Sciences in Qinghai-Tibet Plateau. Qinghai-Tibet Plateau scientific expedition series: Tibet vegetation. Beijing: Science Press, 1988.[中国科学院青藏高原综合科学考 察队. 青藏高原科学考察丛书——西藏植被. 北京: 科学出版社,1988.]
[38] Tibet Bureau of Statistic. Tibet Statistical Yearbook. Beijing: China Statistics Press, 2008.[西藏统计局. 西藏统计年 鉴. 北京:中国统计出版社, 2008.]
[39] GLCF. GLCF Landsat Technical Guide. Global Land Cover Facility, 2007: 1-2.
[40] Tucker C J, Grant D M, Dykstra J D. NASA's global orthorectified Landsat data set. Photogrammetric Engineering and Remote Sensing, 2004, 70(3): 313-322.
[41] Ye Q H, Kang S C, Chen F et al. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of Glaciology, 2006, 52(179): 537-545.
[42] Silverio W, Jaquet J M. Glacial cover mapping (1987-1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sensing of Environment, 2005, 95(3): 342-350.
[43] Hall D K, Bayr K J, Sch ner W et al. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space(1893-2001). Remote Sensing of Environment, 2003, 86(4): 566-577.
[44] Kulkarni A V, Bahuguna I M, Rathore B P et al. Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science, 2007, 92(1): 69-74.
[45] Racoviteanu A E, Williams M W, Barry R G. Optical remote sensing of glacier characteristics: A review with focus on the Himalaya. Sensors, 2008, 8(5): 3355-3383.
[46] Huang H P, Wu B F, Li M M et al. Detecting urban vegetation efficiently with high resolution remote sensing data. Journal of Remote Sensing, 2004, 8(1): 68-74.[黄慧萍, 吴炳方, 李苗苗等. 高分辨率影像城市绿地快速提取技术与 应用. 遥感学报, 2004, 8(1): 68-74.]
[47] Zhang L, Liao M S. Contextual fuzzy clustering of remote sensing imagery. Journal of Remote Sensing, 2006, 10(1): 58-65.[张路, 廖明生. 一种顾及上下文的遥感影像模糊聚类. 遥感学报, 2006, 10(1): 58-65.]
[48] Blaschke T, Hay G J. Object-oriented image analysis and scale-space: theory and methods for modeling and evaluating multiscale landscape structure. International Archives of Photogrammetry and Remote Sensing, 2001, 34(4): 22-29.
[49] Benz U C, Hofmann P, Willhauck G et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3-4): 239-258.
[50] Baatz M, Schape A. Multiresolution Segmentation an optimization approach for high quality multi-scale image segmentation. Angewandte Geographische Informationsverarbeitung, 2000, 12: 12-23.
[51] Su W, Li J, Chen Y H et al. Object-oriented urban land cover classification of multi-scale image segmentation method. Journal of Remote Sensing, 2007, 11(4): 521-530.[苏伟, 李京, 陈云浩等. 基于多尺度影像分割的面向对象城市土地 覆被分类研究. 遥感学报, 2007, 11(4): 521-530.]
[52] Wang Q T, Lin X G, Wang Z J et al. Extraction of winter wheat planting area by object-oriented classification method. Science of Surveying and Mapping, 2008, 33(2): 143-146.[王启田, 林祥国, 王志军等. 利用面向对象分类方法提取 冬小麦种植面积的研究. 测绘科学, 2008, 33(2): 143-146.]
[53] Racoviteanu A E, Arnaud Y, Williams M W et al. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology, 2008, 54(186): 499-510.
[54] Hulka J. Calibrating ASTER for Snow Cover Analysis. University of Girona, Spain, 2008, 1-14.
[55] Kääb A, Huggel C, Paul F et al. Glacier monitoring from aster imagery: accuracy and applications, 2002: 43-53.
[56] Hall D K, Foster J L, Verbyla D L et al. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sensing of Environment, 1998, 66(2): 129-137.
[57] McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
[58] Jin X Y, Scott P. A fuzzy rule base system for object-based feature extraction and classification, 2007, 6567: 65671H.
[59] Hao X H, Wang J, Li H Y. evaluation of the NDSI threshold value in mapping snow cover of MODIS. Journal of Glaciology and Geocryology, 2008, 30(1): 132-138.[郝晓华, 王建, 李弘毅. MODIS雪盖制图中NDSI阈值的检验. 冰 川冻土, 2008, 30(1): 132-138.]
[60] Zhang M H. Extracting water-body information with improved model of spectral relationship in a higher mountain area. Geography and Geo-Information Science, 2008, 24(2): 14-16, 22.[张明华. 用改进的谱间关系模型提取极高山地区水体信息. 地理与地理信息科学, 2008, 24(2): 14-16, 22.]
[61] Liang J, Zhang X H, Wang J. Exploration for the algorithm of snow cover mapping based on NDVI background field. Journal of Remote Sensing, 2007, 11(1): 85-93.[梁继, 张新焕, 王建. 基于NDVI背景场的雪盖制图算法探索. 遥感学 报, 2007, 11(1): 85-93.]
[62] Li D, Wang L P, Liu S Y et al. Tupu analysis of the spatio-temporal glacier variations in the central and western Qangtang Plateau since the little ice age. Journal of Glaciology and Geocryology, 2009, 31(1): 40-47.[李德平, 王利 平, 刘时银等. 小冰期以来羌塘高原中西部冰川变化图谱分析. 冰川冻土, 2009, 31(1): 40-47.]
[63] Su Z, Shi Y F. Response of monsonal temperate glaciers in China to global warming since the little ice age. Journal of Glaciology and Geocryology, 2000, 22(3): 223-229.[苏珍, 施雅风. 小冰期以来中国季风温冰川对全球变暖的响应. 冰川冻土, 2000, 22(3): 223-229.]
[64] Su Z, Liu Z X, Wang W T et al. Glacier fluctuations responding to climate change and forecast of its tendency over the Qinghai-Tibet plateau. Advance in Earth Sciences, 1999, 14(6): 607-612.[苏珍, 刘宗香, 王文悌等. 青藏高原冰川 对气候变化的响应及趋势预测. 地球科学进展, 1999, 14(6): 607-612.]
[65] Zhu H Y. The error characteristics of land use change data. Acta Geographica Sinica, 2004, 59(4): 615-620.[朱会义. 土地利用变化数据的误差特性. 地理学报,2004, 59(4): 615-620.]
[66] Hou S G, Zhang D Q. Comparison of two ice core records since 1954 from Mt. Qomolangma (Everest) Region. Journal of Glaciology and Geocryology, 2003, 25(3): 256-260.[侯书贵, 张东启. 1954 年以来珠穆朗玛峰地区两支冰 芯记录的对比分析. 冰川冻土, 2003, 25(3): 256-260.]
[67] Duan K Q, Wang N L, Pu J C. Events of abrupt change of Indian monsoon recorded in Dasuopu ice core from Himalayas. Chinese Science Bulletin, 2002, 47(8): 691-695.

文章导航

/