土地利用

基于约束性CA方法的北京城市形态情景分析

展开
  • 1. 清华大学建筑学院,北京100084;
    2. 北京市城市规划设计研究院,北京100045;
    3. 日本金泽大学环境设计学院,日本金泽920-1192
龙瀛(1980-), 男, 博士研究生, 高级工程师, 中国地理学会会员(S110007674M), 主要研究方向为规划支持系统和城市系统微观模拟。E-mail: longying1980@gmail.com

收稿日期: 2009-07-01

  修回日期: 2010-03-11

  网络出版日期: 2010-06-25

基金资助

国家自然科学基金项目(50678088); 国家“十一五”科技支撑计划项目(2006BAJ14B08)

Form Scenario Analysis Using Constrained Cellular Automata

Expand
  • 1. School of Architecture, Tsinghua University, Beijing 100084, China;
    2. Beijing Institute of City Planning, Beijing 100045, China;
    3. School of Environment Design, Kanazawa University, Kanazawa 920-1192, Japan

Received date: 2009-07-01

  Revised date: 2010-03-11

  Online published: 2010-06-25

Supported by

National Natural Science Foundation of China, No.50678088; Technical Supporting Programs Funded by Ministry of Science & Technology of China, No.2006BAJ14B08

摘要

约束性元胞自动机(Constrained cellular automata,Constrained CA) 在模拟城市增长方面已有诸多实践,已有文献常利用各种反映土地利用需要、区位影响、管理制度等的政策参数,设定不同的城市空间发展情景以反映未来的城市形态。在基于约束性CA进行城市形态情景分析时,以各种政策参数作为情景条件的研究实例较多。而在中国的城市规划实践中,城市规划用于建设管理的审批,对应明确的城市形态,因而如何利用城市形态作为情景条件分析所需政策,也有实践意义,可以解决一些广为关注的重要问题,例如已有的发展政策是否与期望的城市形态相匹配,不同规划方案所需采取的政策有什么区别等。本文提出了以城市形态作为情景条件(即形态情景分析) 的新方法,该方法基于约束性CA,改变了传统的约束性CA情景条件的设置方法,以期望的未来城市形态为目标,识别相应需要的发展政策。并将北京市域的4 个规划城市形态作为情景条件进行了实证分析,对多个规划方案实施的可能性和政策参数进行对比分析,证明该方法具有较好的适用性和可行性,是将约束性CA的应用扩展到城市规划领域的又一尝试。

本文引用格式

龙瀛,沈振江,毛其智,党安荣 . 基于约束性CA方法的北京城市形态情景分析[J]. 地理学报, 2010 , 65(6) : 643 -655 . DOI: 10.11821/xb201006002

Abstract

Scenario analysis has been widely applied in the realm of urban and regionalplanning. In most of current scenario analysis researches of urban growth, developing policiesare set as the input scenario conditions to generate various urban forms, which can bereferenced by policy makers and urban planners. This paper reverses the line of currentscenario analysis for urban growth, in which the term of form scenario analysis (FSA), aspatial explicit approach, is novelly defined, employing the urban form as the scenariocondition and aiming at identifying whether any policies set can be implemented to realizethe predefined form. If yes, what the detailed policy implications are for the scenario formshould be answered. A constrained cellular automata model (CA) is developed for FSA,which borrows the routine model calibration method of constrained CA using historicalobserved forms from existing literatures. Four planned schemes of Beijing Master Plan 2020for the Beijing Metropolitan Area are analyzed using constrained CA to test FSA approach,and the corresponding required policy parameters are generated, together with policyimplications for the study area. FSA is proved to be suitable for urban planning practice.

参考文献


[1] Klosterman R E. The what if? Collaborative planning support system. Environment and Planning B: Planning and Design, 1999, 26(3): 393-408.

[2] Landis L D. The California urban future model: A new generation of metropolitan simulation models. Environment and Planning B: Planning and Design, 1994, 21(4): 399-420.

[3] Landis L D. Imaging land use futures: Applying the California urban future model. Journal of American Planning Association, 1995, 61(4): 438-457.

[4] Landis L D, Zhang M. The second generation of the California urban future model (Part 1): Model logic and theory. Environment and Planning B: Planning and Design, 1998, 25(5): 657-666.

[5] Landis L D, Zhang M. The second generation of the California urban future model (Part 2): Specification and calibration results of the land-use change submodel. Environment and Planning B: Planning and Design, 1998, 25(6): 795-824.

[6] Han H, Dang A R. Assessment of the implementation of urban construction boundaries in Beijing City by using remote sensing data//The 16th International Conference on Geoinformatics & Joint Conference on GIS and Built Environment. Guangzhou, China, 2008.

[7] Han H, Lai S, Dang A et al. Effectiveness of Urban Construction Boundaries in Beijing: An Assessment. Journal of Zhejiang University SCIENCE A, 2009, 10(9) 1285-1295.

[8] Kahn J, Wiener A J. The Year 2000: A Framework for Speculation on the Next 33 Years. New York: MacMillan Press, 1967.

[9] Pearman A D. Scenario construction for transportation planning. Transportation Planning and Technology, 1988, 7: 73-85.

[10] Ratcliffe J S. Scenario building: A suitable method for strategic property planning? Cambridge: RICS Cutting Edge Conference, 1999.

[11] Schoemaker P J H. Scenario planning: A tool for strategic thinking. Sloan Manage. Rev., 1995: 25-40.

[12] Ringland G. Scenario planning: Managing for the Future. New York: John Wiley, 1998: 3-15.

[13] Janssen R, Herwijnen M V, Stewart T J et al. Multiobjective decision support for land-use planning. Environment and Planning B: Planning and Design, 2008, 35: 740-756.

[14] Li X, Yeh A G O. Principal component analysis of stacked multi-temporal images for monitoring of rapid urban expansion in the Pearl River delta. International journal of Remote Sensing, 1998, 19(8): 1501-1518.

[15] Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 2002, 16(4): 323-343.

[16] Li X, Yeh A G O. Data mining of cellular automata's transition rules. International Journal of Geographical Information Science, 2004, 18(8): 723-744.

[17] Liu X, Li X. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 2008, 211(1/2): 169-181.

[18] Liu X, Li X, Liu L et al. A bottom-up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 2008, 22(11/12): 1247-1269.

[19] Wu F. Simland: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 1998, 12(1): 63-82.

[20] Li X, Yeh A G O. Modeling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 2000, 14(2): 131-152.

[21] Wu F. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International journal of Geographical Information Science, 2002, 16(8): 795-818.

[22] Clark K C, Gaydos L J. Loose-coupling a cellular automation model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Geographical Information Sciences, 1998, 12(7): 699-714.

[23] Long Y, Shen Z, Du L et al. BUDEM: An urban growth simulation model using CA for Beijing metropolitan area. Proceedings of the SPIE - Geoinformatics, 2008, 71431D-1-15.

[24] Long Ying, Han Haoying, Mao Qizhi. Establishing urban growth boundaries using constrained CA. Acta Geographica Sinica, 2009, 64(8): 999-1008.
[龙瀛, 韩昊英, 毛其智. 利用约束性CA 制定城市增长边界. 地理学报, 2009, 64(8): 999-1008..

[25] Long Ying, He Yong, Liu Xin et al. Planning of the controlled-construction area in Beijing: Establishing urban expansion boundary. City Planning Review, 2006, 30(12): 20-26.
[龙瀛, 何永, 刘欣等. 北京市限建区规划: 制订城市扩展的边界. 城市规划, 2006, 30(12): 20-26..

[26] Beijing Planning Commission. Land Resources in Beijing. Beijing: Beijing SciTech Press, 1988.
[北京市计划委员会国 土环保处. 北京国土资源. 北京: 北京科学技术出版社, 1988..

[27] Beijing Municipal Planning Committee, Beijing Institute of City Planning, Beijing Academy of Urban Planning. Beijing Urban Planning Atlas (1949-2005), 2006.
[北京市规划委员会, 北京市城市规划设计研究院, 北京城市规划学 会. 北京城市规划图志(1949-2005), 2006..

[28] Beijing Municipal Planning Committee. Ecologically Limited Land-use Planning in Beijing (2006-2020), 2007.
[北京 市规划委员会. 北京市限建区规划(2006-2020), 2007..

[29] Liu X H, Wang J F, Liu M L et al. Spatial heterogeneity of the driving forces of cropland change in China. Science in China: Series D, 2005, 48: 2231-2240.

[30] Li X, Yang Q S, Liu X P. Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landscape and Urban Planning, 2008, 86: 177-186.

文章导航

/