区域发展

中国城市环线道路间距模型与案例

展开
  • 山西师范大学城市与环境科学学院, 山西临汾041004
贾文毓(1960-), 男, 副教授, 硕士生导师, 中国地理学会会员, 主要研究方向为城市地理学与经济地理学。 E-mail:jwyxs@163.com; cyzy313@163.com

收稿日期: 2006-11-11

  修回日期: 2007-02-07

  网络出版日期: 2007-06-25

Modelling and Cases of Cities Ring Road Spacing in China

Expand
  • Institute of Urban and Environment Science, Shanxi Normal University, Linfen 041004, Shanxi, China

Received date: 2006-11-11

  Revised date: 2007-02-07

  Online published: 2007-06-25

摘要

通过对中国16 座城市环路的分析, 总结出了中国城市环路间距原理: 中国城市环路由外而内的间距之比符合黄金分割数(ω= 0.618033988?) 或其倒数(1/ω = 1.618033988?)。 根据间距比值可将中国环路分为A、B、C 三种类型: A 型标准比值为1/ω; B 型标准比值为 ω; C 型在纵(横) 向上标准比值为1/ω, 在横(纵) 向上标准比值为ω。通过实证分析, 中国城市环路间距之比基本符合这一原理。该原理适用于不同规模、不同性质和不同形态的城市环路。运用该原理可对中国城市环路进行规划建议和合理性评价。

本文引用格式

贾文毓 . 中国城市环线道路间距模型与案例[J]. 地理学报, 2007 , 62(6) : 571 -578 . DOI: 10.11821/xb200706002

Abstract

According to the analysis of ring roads in 16 cities, this paper presents a principle of ring road spacing between cities in China: The city ring roads in China accord with golden section number (ω = 0.618033988...) or golden section number reciprocal (1/ ω = 1.618033988...) from the outside to ratio of the inner spacing. According to ring road spacing ratio China's ring roads can be divided into three ring types of A, B, C: A type standard ratio is 1/ω; B type standard ratio is ω; and C type is 1/ω in the upper standard of longitudinal direction (from south to north) ratio and ω in the upper standard of transverse direction (from east to west) ratio. Case analysis indicates that China's city ring roads spacing ratio accords basically with this principle. The principle applies to the city ring roads of different scales, characteristics and different forms. Applying this principle, it is possible to carry out planning and raise suggestions for China's city ring roads as well as their rationality appraisals.

参考文献


[1] Indra Kagis McEwen-Vitruvius: Writing the Body of Architecture. MIT Press, 2004.

[2] Baldwin B. The Date, Identity, and Career of Vitruvius. In Latomus, 1990, 49: 425-434.

[3] Lewis Munfoud. Ni Wenyan, Song Junling trans. The City in History: Its Origins, Its Transformation and Its Prospects. Beijing: China Industry Press, 1989. 274-276.
[刘易斯·芒福德著. 倪文彦, 宋峻岭译. 城市发展史: 起源、演变和前 景. 北京: 中国工业出版社, 1989. 274-276.]

[4] Xiao Lichun. Geometrical thinking of urban planning. Urban Planning Forum, 2006, 166(6): 61-67.
[肖立春. 城市规划 中的几何思维. 城市规划学刊, 2006, 166(6): 61-67.]

[5] Xu Feng, Zhou Yixing. An application of within-district road network in Wuhan urban development strategy. Modern Urban Research, 2006, 21(9): 13-22.
[许锋, 周一星. 环环相套放射式路网在武汉城市发展战略中的应用. 现代城市 研究, 2006, 21(9): 13-22.]

[6] Qiu Yinying, Zhou Jun. Systematic road of the city of Tianjin 2 takes advantage 4 fleetnesses roads traffic characteristic property and their effect counting layout to commodity net. City, 2006, 78(3): 39-42.
[丘银英, 周军. 天津市“4 个2” 快速路系统的道路交通特性及其对商品网点布局的影响. 城市, 2006, 78(3): 39-42.]

[7] Chen Feng. Orbit traffic structures Beijing city space structure. Urban Planning Review, 2006, (6): 36-39.
[陈锋. 轨道交 通构建北京城市空间结构. 城市规划, 2006, (6): 36-39.]

[8] He Chongming. Network structure builds area central city traffic. Urban Planning Review, 2006, (7): 75-78.
[贺崇明. 区 域中心城市交通网络的构建. 城市规划, 2006, (7): 75-78.]

[9] Wang Feng. Guangzhou city unobstructed plan of fleetness orbit and practice. Urban Planning Review, 2006, (7): 79-84.
[王峰. 广州城市快速轨道交通的规划与实践. 城市规划, 2006, (7): 79-84.]

[10] Huang Zhongmin (ed.). Chinese Transportation Traveling Atlas. Beijing: SinoMaps Press, 2006.
[黄忠民主编. 中国交 通旅游地图册. 北京: 中国地图出版社, 2006.]

[11] Hunan Map Press. Chinese Road and Railroad Atlas. Changsha: Hunan Map Press, 2006.
[湖南地图出版社编. 中国公 路铁路地图册. 长沙: 湖南地图出版社, 2006.]

[12] Hunan Map Press. Chinese Transportation Atlas. Changsha: Hunan Map Press, 2007.
[湖南地图出版社编. 中国交通地图册. 长沙: 湖南地图出版社, 2007.]

[13] Hu Zuoxuan, Deng Mingli. The Thought of Mathematics in the 20th Century. Jinan: Shandong Education Press, 1999. 359.
[胡作玄, 邓明立. 20 世纪数学思想. 济南: 山东教育出版社, 1999. 359.]

[14] Morris Kline (USA). The Beijing University Math Department History of Mathematics Translation Group (trans.). Ancient and Modern Thought of Mathematics (No.4). Shanghai: Shanghai Science and Technology Press, 1981. 260.
[ (美)克莱因著. 北京大学数学系数学史翻译组译. 古今数学思想(第四册). 上海: 上海科学技术出版社, 1981. 260.]

[15] Liang Zongju. Mathematics History Literary Quotation. Shenyang: Liaoning Education Press, 1995. 202-212.
[梁宗巨. 数学历史典故. 沈阳: 辽宁教育出版社, 1995. 202-212.]

[16] Zhang Shunyan. Mathematic Beauty and Reason. Beijing: Peking University Press, 2004. 36-42.
[张顺燕. 数学的美与 理. 北京: 北京大学出版社, 2004. 36-42.]

[17] Zhang Jingzhong (ed.). Dictionary Sets of Mathematics (No.5). Taiyuan: Shanxi Education Press; Nanjing: Southeast University Press; Beijing: China Science and Technology Press, 2002. 33; 55.
[张景中主编. 数学辞海(第五卷). 太 原: 山西教育出版社; 南京: 东南大学出版社; 北京: 中国科学技术出版社, 2002. 33; 55.]

[18] Du Ruizhi (ed.). A Dictionary of Mathematical History. Jinan: Shandong Education Press. 477; 478.
[杜瑞芝主编. 数 学史辞典. 济南: 山东教育出版社, 2000. 705.]

[19] Thenoi Pappas (USA). Chen Yihong (trans.) The Wonder of Mathematics. Shanghai: Shanghai Technology and Education Press.1999.134-136.
[(美)西奥妮·帕帕斯著, 陈以鸿译. 数学的奇妙. 上海: 上海科技教育出版社, 1999. 134-136.]

[20] Liu Jie, Yuan Jun. Chinese Eight Diagrams Medicine. Qingdao: Qingdao Press, 1993. 475.
[刘杰, 袁峻. 中国八卦医 学. 青岛: 青岛出版社, 1993. 475.]

文章导航

/