长江研究

长江中游马口—田家镇河段40 年来河道演变

展开
  • 1. 中国科学院南京地理与湖泊研究所, 南京210008;
    2. 中国科学院寒区旱区环境与工程研究所, 兰州730000;
    3. 华东师范大学教育部地理信息开放实验室, 上海200062
张强(1974-), 男, 博士, 主要从事气候变化与水资源、河道水沙输运、河床演变地貌水文效应等研究。 E-mail: zhangqiang@nju.org.cn

收稿日期: 2006-08-20

  修回日期: 2006-09-28

  网络出版日期: 2007-01-25

基金资助

中国科学院南京地理与湖泊研究所所长专项研究基金

Channel Changes of the Makou-Tianjiazhen Reach dur ing the Past 40 Years in the Middle Yangtze River

Expand
  • 1. Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China;
    2. Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China;
    3. Laboratory of Geographic Information Science, East China Normal University, Shanghai 200062, China

Received date: 2006-08-20

  Revised date: 2006-09-28

  Online published: 2007-01-25

Supported by

Director Foundation for Nanjing Institute of Geography and Limnology, No.S260018

摘要

运用地理信息系统(GIS) 与数字高程模型(DEM) 分析了马口—田家镇河段1963 年、1972 年与2002 年河道地形数据, 较为系统地研究了该河段过去40 年冲淤时空变化。研究结 果认为, 1972 年与1963 相比冲刷量达到789.9 hm3, 冲刷面积为39.7×104 m2; 2002 年与1963 年相比冲刷量达到1196.5 hm3, 冲刷面积为59.4×104 m2; 2002 年与1972 年相比冲刷量 达到960 hm3, 冲刷面积为54.3×104 m2。由以上结果认为, 马口—田家镇河段近40 年来以冲刷为主; 河道冲淤变化以马口卡口与田家镇卡口等窄深河段最为剧烈, 宽浅河段与顺直河 段冲淤变化较为和缓, 冲淤变化幅度不大; 卡口上、下端以淤积过程为主, 而卡口顶冲水流的顶弯部位以冲刷过程为主。研究河段冲淤变化受上游来水来沙条件影响很大, 对未来三峡工程建成后, 三峡大坝下游来水来沙以及研究河段冲淤变化的影响研究提供借鉴。

本文引用格式

张强, 施雅风, 姜彤, 李茂田 . 长江中游马口—田家镇河段40 年来河道演变[J]. 地理学报, 2007 , 62(1) : 62 -71 . DOI: 10.11821/xb200701007

Abstract

Quantitative analysis was performed on filling and scouring process for the river reach between Makou and Tianjiazhen, the middle Yangtze River with the help of GIS and DEM technology. The research results indicate that the river reach between Makou and Tianjiazhen was dominated by the scouring process, and the magnitude of scouring is increasing over time. The intensity of scouring process is more in the deep and narrower river reach than shallower and wider ones. The river reach in the Makou and Tianjiazhen river knot is in frequent scouring and filling process, however the river reach upper to the Makou and lower to the Tianjiazhen river knot is in moderate scouring and filling process. The river reach just upstream or downstream to the river knot (e.g. Makou and Tianjiazhen river knot in this research) is dominated by filling process and the river reach in the river knot is dominated by scouring process. Research results indicate no changes happen in the boundary of the river but the scouring and the filling magnitude in specific river channel is strong. The filling and scouring process of the study river reach is greatly impacted by the sediments and water from the upstream of the study river reach. The construction of the Three Gorges Dam just upstream to Yichang will cause further decrease of the release of sediment load to the middle and the lower Yangtze River basin, which will further intensify the scouring process of the river channel in the study river reach.

参考文献


[1] Shi Guoyu, Xu Quanxi, Chen Zefang. Analysis on channel scouring and silting and self-adjusting in midstream and downstream reaches of Changjiang River. Journal of Mountain Science, 2002, 20(3): 257-265.
[石国钰, 许全喜, 陈泽 方. 长江中下游河道冲淤与河床自动调整作用分析. 山地学报, 2002, 20(3): 257-265.]

[2] Zhu Li, Cai Hesheng. Recent channel evolution and major factors controlling it in the middle and lower reaches of the Yangtze River. Earth Science: Journal of China University of Geosciences, 1995, 20(4): 427-432.
[朱立, 蔡鹤生. 长江 中下游近期河道演变及其主要影响因素. 地球科学, 1995, 20(4): 427-432.]

[3] Pan Qingshen, Lu Jinyou. Changes of river channel in the middle Yangtze River. Yangtze River, 1999, 30(2): 32-35.
[潘 庆燊, 卢金友. 长江中游近期河道演变分析. 人民长江, 1999, 30(2): 32-35.]

[4] Yang Huairen, Xu Xin, Yang Dayuan et al. Environment Evolution and Geo-ecological System in the Middle and Lower Yangtze River. Nanjing: Hohai University Press, 1995. 161-183.
[杨怀仁, 徐馨, 杨达源等. 长江中下游环境变迁与地 生态系统. 南京: 河海大学出版社, 1995. 161-183.]

[5] Pan Qingshen. Study on evolution of middle and lower reaches of Yangtze River in recent fifty years. Journal of Yangtze River Scientific Research Institute, 2002, 18(5): 18-22.
[潘庆燊. 长江中下游河道近50 年变迁研究. 长江科学 院院报, 2002, 18(5): 18-22.]

[6] Yin Ruilan. Preliminary probe into variation of flood water level at middle reaches of Yangtze River. Journal of Yangtze River Scientific Research Institute, 2002, 19(1): 48-51.
[殷瑞兰. 长江中游洪水位变化初探. 长江科学院院报, 2002, 19 (1): 48-51.]

[7] Xiao Zhiyuan, Guo Haijin, Xu Delong et al. Computation of channel storage capacity and scouring and silting variation of the Yangtze River from Chenglingji to Luoshan. Yangtze River, 2003, 34(1): 38-56.
[肖志远, 郭海晋, 徐德龙等. 城 陵矶至螺山河段槽蓄量及冲淤变化计算. 人民长江, 2003, 34(1): 38-56.]

[8] Li Yitian, Deng Jinyun, Sun Zhaohua et al. Calculation of deposition in Luoshan-Hankou reach using sediment-transport balance and topographic change methods. Journal of Sediment Research, 2002, (4): 20-24.
[李义天, 邓金运, 孙昭华等. 输沙量法和地形法计算螺山汉口河段淤积量比较. 泥沙研究, 2002, (4): 20-24.]

[9] Li Maotian, Yu Xia, Chen Zhongyuan. Evolution and developing trend of the Jiujiang River course of the Yangtze River in recent forty years. Scientia Geographica Sinica, 2004, 24(1): 76-82.
[李茂田, 于霞, 陈中原. 40 年来长江九江河段 河道演变及其趋势预测. 地理科学, 2004, 24 (1): 76-82.]

[10] Gregory K J, Davis R J, Downs P W. Identification of river channel change due to urbanization. Applied Geography, 1992, 12: 299-318.

[11] James A. Incision and morphologic evolution of an alluvial channel recovering from hydraulic mining sediment. Geol. Soc. Am. Bull., 1991, 103: 723-736.

[12] Richard A Marston, Jean-Paul Bravard, Tim Green. Impacts of reforestation and gravel mining on the Malnant River, Haute-Savoie, French Alps. Geomorphology, 2003, 1380: 1-10.

[13] Kondolf G M, Piegay H, Landon N. Channel response to increased and decreased bed-load supply from land use change: contrasts between two catchments. Geomorphology, 2002, 45: 35-51.

[14] Madej M A, Ozaki V. Channel response to sediment wave propagation and movement, Redwood Creek, California, USA. Earth Surface Processes and Landforms, 1996, 21: 911-927.

[15] Sear D A, Newson M D. Environmental change in river channels: neglected element towards geomorphological typologies, standards and monitoring. The Science of the Total Environment, 2003, 310: 17-23.

[16] Nicola Surian, Massimo Rinaldi. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 2003, 50: 307-326.

[17] Institute of Geography, Chinese Academy of Sciences, Institute of Water Resources and Hydropower Research of Yangtze River, Institute of Planning and Design of the Bureau of Navigation. Features and Evolution of the River Channel in the Middle and Lower Yangtze River. Beijing: Science Press, 1985. 90-91.
[ 中国科学院地理研究所, 长江 水利水电科学研究院, 长江航道局规划设计研究所. 长江中下游河道特性及其演变. 北京: 科学出版社, 1985. 90-91.]

[18] Shi Yafeng, Zhang Qiang, Jiang Tong et al. River blocks and their impacts on flood discharge in the middle Yangtze River between Wuhan and Jiujiang. Advance in Earth Sciences, 2004, 19(4): 500-505.
[施雅风, 张强, 姜彤等. 长江 中游武汉—九江河段河道卡口及其阻洪可能效应探讨. 地球科学进展, 2004, 19(4): 500-505.]

[19] Shi Yafeng, Zhang Qiang, Chen Zhongyuan et al. Features of deep trough at Tianjiazhen reach and its impacts on flood discharge in the Yangtze River. Acta Geographica Sinica, 2005, 60(5): 425-432.
[施雅风, 张强, 陈中原等. 长江中游 田家镇深槽的特征以及泄洪影响. 地理学报, 2005, 60(5): 425-432.]

[20] Hong Qingyu. Flood Control of Rivers in China: The Yangtze River. Beijing: Press of China Water Resources and Hydropower, 1998. 186-188.
[洪庆余. 中国江河防洪丛书: 长江卷. 北京: 中国水利水电出版社, 1998. 186-188.]

[21] Cressie N A C. The origins of Kriging. Mathematical Geology, 1990, 22: 239-252.

[22] Isaaks E H, Srivastava R M. An Introduction to Applied Geostatistics. New York: Oxford University Press, 1989. 561.

[23] Zhang Qiang, Xu Chongyu, Stefan Becker, et al. Sediment and runoff changes in the Yangtze River basin during past 50 years. Journal of Hydrology, 2006, 331: 511–523.

[24] Shi Yafeng, Zhang Qiang, Chen Zhongyu et al. Channel morphology and its impact on flood passage, the Tianjiazhen reach of the middle Yangtze River. Geomorphology, 2006, doi:10.1016/j.geomorph.2006.03.019.

文章导航

/