黄土高原祖厉河流域潜在植被分布模拟研究
收稿日期: 2006-08-19
修回日期: 2006-12-05
网络出版日期: 2007-01-25
基金资助
国家自然科学基金项目(40671067); 教育部重点项目(10425)
Modelling of Potential Vegetation in Zulihe River Water shed of the West-centr al Loess Plateau
Received date: 2006-08-19
Revised date: 2006-12-05
Online published: 2007-01-25
Supported by
National Natural Science Foundation of China, No.40671067; Key Project of the Ministry of Education, No.10425
植被空间分布格局深受环境影响, 分析植被与环境之间的关系一直是植物生态学的中心问题。论文从黄土高原自然植被恢复问题出发, 引出植被恢复的参照标准- 潜在自然植被。 依据气象站和雨量站观测资料, 建立气温降水与海拔高度和地理位置的统计方程, 以GIS 为技术支撑, 对两大环境变量进行空间化。通过野外观测取样, 结合气温降水的空间分布, 界定祖厉河流域不同草地覆盖度的生境空间。根据生境空间边界函数, 对整个流域内的潜在草地植被分布进行模拟。草地分布现状与潜在草地分布对比发现, 低覆盖草地由北向南扩展, 占潜在中覆盖草地面积的37.39%, 占潜在高覆盖草地面积的34.98%。中覆盖草地也在此向南部区域和北部山地扩展, 占潜在高覆盖草面积的11.51%。高覆盖草地收缩到南部和北部山地狭小地带, 仅占其应有区域的4.84%。
赵传燕, 冯兆东, 南忠仁, 李守波 . 黄土高原祖厉河流域潜在植被分布模拟研究[J]. 地理学报, 2007 , 62(1) : 52 -61 . DOI: 10.11821/xb200701006
There has been an increasing use of predictive spatial distribution of main communities or dominant species at the regional scale for ecological restoration planning, biodiversity conservation planning and regional management decisions on the Loess Plateau. Understanding the spatial distribution of main communities at the regional scale is also essential in assessing the impacts of environmental change or human impacts on vegetation distribution. Based on the investigation of steppe cover that correlates with its habitat, this study focused on the prediction of steppe distribution in the Zulihe River watershed of the west-central Loess Plateau. First, we investigated the cover of steppe of 365 samples. Secondly, important variables (annual mean precipitation and annual mean temperature) that affect vegetation distribution were spatialized as functions of elevation and horizontal coordinates via a GIS. Thirdly, the niche spaces of steppe were determined by incorporating the spatially-distributed main variables with the steppe cover that came from field investigation and remote sensing data (Landsat TM image). The niche spaces defined then were extrapolated over the study area. Comparing the distribution of predicted steppe with its present distribution, we found that the natural vegetation in the region has been destroyed and disturbed by human activities. As a result, soil erosion has been aggravated. The ecological conditions in the study area have been progressively degraded by human-accelerated soil erosion. The object of the study is to provide important baseline for ecological restoration in the Zulihe River watershed.
[1] Wu Qinxiao, Yang Wenzhi. Forest and Grassland Vegetation Construction and Its Sustainable Development in Loess Plateau. Beijing: Science Press, 1998. 118-156.
[吴钦孝, 杨文治. 黄土高原植被建设与持续发展. 北京: 科学出版社, 1998. 118-156.]
[2] Cheng Xu. Relationship between agriculture, ecological deterioration, restoration and reconstruction in Loess Plateau area of Northwest China. Scientia Agricultura Sinica, 2001, 34(1): 84-90.
[程序. 西北黄土高原区农业与生态恶化及恢复重 建的关系. 中国农业科学, 2001, 34(1): 84-90.]
[3] Zhang Guosheng. Research progress on trees and shrub drought-resistance and woodland water activity in arid and semi-arid region. Journal of Desert Research, 2000, 20(4): 364-368.
[张国盛. 干旱、半干旱地区乔灌木树种耐旱性及 林地水分动态研究进展. 中国沙漠, 2000, 20(4): 364-368.]
[4] Yang Xinmin. Study on the characteristics of water environment in shrubbery land of Loess Plateau. Arid Zone Research, 2001, 18(1): 8-13.
[杨新民. 黄土高原灌木林地水分环境特征研究. 干旱区研究, 2001, 18(1): 8-13.]
[5] Wei Tianxing, Yu Xinxiao, Zhu Jinzhao et al. Relationship between water supply and consumption of main planting tree species of protection forests in loess area of western Shanxi Province. Chinese Journal of Applied Ecology, 2001, 12(2): 185-189.
[魏天兴, 余新晓, 朱金兆等. 黄土区防护林主要造林树种水分供需关系研究. 应用生态学报, 2001, 12(2): 185-189.]
[6] Sun Changzhong, Huang Baolong, Liu Shuming et al. Soil moisture dynamics in forest land and wasteland of Loess Plateau. Chinese Journal of Applied Ecology, 2000, 11(4): 523-526.
[孙长忠, 黄宝龙, 刘淑明等. 黄土高原荒坡榆林 地土壤水分变化规律研究. 应用生态学报, 2000, 11(4): 523-526.]
[7] Hou Xueyu. Chinese Physical Geography·Phytogeography. Beijing: Science Press, 1988.
[侯学煜. 中国自然地理·植物 地理(下册). 北京: 科学出版社, 1988.]
[8] Zhu Zhicheng. The range of forest-steppe zone on the Loess Plateau of northern part in Shaanxi Province. Acta Phytoecologica et Geobotanica Sinica, 1983, 7 (2): 122-131.
[朱志诚. 陕北黄土高原上森林草原的范围. 植物生态学 与地植物学丛刊, 1983, 7 (2): 122-131.]
[9] Meng Qingmei. Soil and Water Conversation in Loess Plateau. Zhengzhou: Huanghe Hydraulic Press, 1996. 41-171.
[孟 庆枚. 黄土高原水土保持. 郑州: 黄河水利出版社, 1996. 41-171.]
[10] Tüx ien Reinhold. Die heutige potentille natuerliche vegetation als Gegenst vegetation skartierung. Angew, pflanzensoziologie, 1956, 13: 5-42.
[11] Küchler A W. Vegetation Mapping. The Ronald Press Company, 1967. 20-50.
[12] Liu Huamin, Wu Shaohong, Zheng Du et al. The study on the potential natural vegetation and future prospect. Progress in Geography, 2004, 23(1): 62-70.
[刘华民, 吴绍洪, 郑度等. 潜在自然植被研究与展望. 地理科学进展, 2004, 23 (1): 62-70.]
[13] K!ppen W. Das geographische system der klimate. In: K "ppen, W, Geider R (eds.), Handbuch der Klimatologie. Berlin: Gebruder Borntrager, 1936. 46-48.
[14] Thornthwaite C W. 1948. An approach toward a rational classification of climate. Geogr. Rev., 38: 57-94.
[15] Holdridge L R. Life Zone Ecology. Tropical Science Center, San Jose. Costa Rica. 1967.
[16] Chang Hsin-shih. The potential evapotranspiration (PE) index for vegetation and vegetation-climatic classification (1). Acta Phytoecologica et Geobotanica Sinica, 1989, 13: 1-9.
[张新时. 植被的PE (可能蒸散) 指标与植被—气候分类 (1). 植物生态学与地植物学报, 1989, 13: 1-9.]
[17] Chang Hsin-shih. The potential evapotranspiration (PE) index for vegetation and vegetation-climatic classification (2). Acta Phytoecologica et Geobotanica Sinica, 1989, 13: 197-207.
[张新时. 植被的PE (可能蒸散) 指标与植被—气候分 类(2). 植物生态学与地植物学报, 1989, 13: 197-207.]
[18] Chang Hsin-shih, Yang Dian'an, Ni Wenge. The potential evapotranspiration (PE) index for vegetation and vegetation-climatic classification (3). Acta Phytoecologica et Geobotanica Sinica, 1993, 17: 97-109.
[张新时, 杨奠安, 倪文革. 植被的PE (可能蒸散) 指标与植被—气候分类(3). 植物生态学与地植物学报, 1993, 17: 97-109.]
[19] Wang Yifeng, Xiao Xiangming. Climatic gradient of main vegetation types in the Loess Plateau region. Acta Botanica Sinica, 35(4): 291-299.
[王义凤, 肖向明. 黄土高原地区主要植被类型的气候梯度分布. 植物学报, 1993, 35 (4): 291-299.]
[20] Zhou Guangsheng, Wang Yuhui. The study on the climate-vegetation classification for global change and future prospect. Chinese Science Bulletin, 1999, 44(24): 2587-2592.
[周广胜, 王玉辉. 全球变化与气候—植被分类研究和 展望. 科学通报, 1999, 44(24): 2587-2592.]
[21] Franklin Janet. Predictive vegetation mapping: geographic modeling of bio-spatial pattern in relation to environmental gradients. Progress in Physical Geography, 1995, 19(4): 474-499.
[22] Leemans R, Cramer W, van Minnea J G. Prediction of global biome distribution using bioclimatic equilibrium models. In: Melillo J M, Breymeyer A (eds.). Effects of Global Change on Coniferous Forests and Grassland. New York: J Wiley and Sons, 1996, 413-450.
[23] Davis A J, Jenkinson L S, Lawton J H et al. Making mistakes when predicting shifts in species range in response to global warming. Nature, 1998, 391: 783-786.
[24] Goudriaan J, Shugart H H, Bugmann H et al. Use of models in global climate studies. In: Walker B, Steffen W, Canadell J et al. (eds.). The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems. London: Cambridge University Press, 1999. 106-140.
[25] Austin B P. Searching for a model for vegetation analysis. Vegetation, 1980, 43: 11-21.
[26] Austin B P. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics, 1985, 16: 39-61.
[27] Austin B P, Smith T M. A new model for the continuum concept. Vegetation, 1989, 83: 35-47.
[28] Maidment D R. Geographic information system and hydrologic modeling. In: Goodchild et al. (eds.). Environmental Modeling with GIS. New York: Oxford University Press, 1993. 147-167.
[29] Moore I D. Hydrologic modeling and GIS. In: Goodchild M F et al. (eds.). Environmental Modeling: Progress and Research Issues. GIS World Inc., 1996. 143-148.
[30] Iverson L R, Dale M E, Scott T et al. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology, 1997, 12: 331-348.
[31] Bolstad P V, Swank W, Vose J. Predicting southern appalachian overstory vegetation with digital terrain data. Landscape Ecology, 1998. 13: 271-283.
[32] Ostendorf B, Reynolds J F. A model of Arctic tundra vegetation derived from topographic gradients. Landscape Ecology, 1998, 13: 187-201.
[33] Tappeiner U, Tasser E, Tappeiner G. Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an alpine area. Ecological Modelling, 1998, 113: 225-237.
[34] Manies K L, Mladenoff D J. Testing methods to produce landscape-scale presettlement vegetation maps from the U.S. Public Land Survey Records. Landscape Ecology, 2000, 15: 741-754.
[35] Mün ier B, Nygaard B, Ejrn"s R et al. A biotope landscape model for prediction of semi-natural vegetation in Denmark. Ecological Modeling, 2001, 139: 221-233.
[36] Dymond C C, Johnson E A. Mapping vegetation spatial patterns from modeled water, temperature and solar radiation gradients. Photogrammetry and Remote Sensing, 2002, 57: 69-85.
[37] Pfeffer K, Pebesma E J, Burrough P A. Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape ecology, 2003, 18: 759-776.
[38] Brzeziecki B, Kienast F, Wildi O A. Simulated map of the potential natural forest vegetation of Switzerland. Journal of Vegetation Science, 1993, 4: 499-508.
[39] Fischer H S. Simulating the distribution of plant communities in an alpine landscape. Coenoses, 1990, 5: 37-43.
[40] Guisan A, Theurillat J-P, Kienast, F. Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science, 1998, 9: 65-74.
[41] Brown D G. Predicting vegetation types at treeline using topography and biophysical disturbance variables. Journal of Vegetation Science, 1994, 5: 641-656.
[42] Liu Jiyuan, Zhuang Dafang, Ling Yangrong et al. Vegetation integrated classification and mapping using remote sensing and GIS technique in Northeast China. Journal of Remote Sensing, 1998, 2(4): 285-291.
[ 刘纪远, 庄大方, 凌扬荣等. 基于GIS 的中国东北植被综合分类研究. 遥感学报, 1998, 2(4): 285-291.]
[43] Zhang Baiping, Zhou Chenghu, Chen Shupeng. The geo-info-spectrum of montane altitudinal belts in China. Acta Geographica Sinica, 2003, 58(2): 163-171.
[张百平, 周成虎, 陈述彭. 中国山地垂直带信息图谱的探讨. 地理学报, 2003, 58(2): 163-171.]
[44] Zhang Baiping, Xu Juan, Wu Hongzhi et al. Digital integration and pattern analysis of mountain altitudinal belts in China. Journal of Mountain Science, 2006, 24(2): 144-149.
[张百平, 许捐, 吴红智等. 中国山地垂直带的数字集成 与基本规律分析. 山地学报, 2006, 24(2): 144-149.]
[45] Zhao Chuanyan, Nan Zhongren, Cheng Guodong et al. GIS-assisted modelling of the spatial distribution of Qinghai spruce in the Qilian Mountain, northwestern China based on biophysical parameters. Ecological Modelling, 2006, 191: 487-500.
/
〈 | 〉 |