中国降水观测误差分析及其修正
收稿日期: 2006-09-06
修回日期: 2006-11-09
网络出版日期: 2007-01-25
基金资助
中国科学院重要方向性项目(KZCX3-SW-345); 中国科学院寒区旱区环境与工程研究所人才基金(2004116); 寒区旱区环境与工程研究所创新前沿项目(2004102)
A Bias-corrected Precipitation Climatology for China
Received date: 2006-09-06
Revised date: 2006-11-09
Online published: 2007-01-25
Supported by
National Natural Sciences Foundation of China, No.KZCX3-SW-345; Funds by CAREERI of CAS, No.2004116; No.2004102
在1980s 乌鲁木齐河流域进行的降水误差观测试验结果基础上, 依据我国726 个气象站1951~2004 年逐日观测资料, 对降水的动力损失、微量降水以及湿润损失进行系统的修正, 以期获得更准确的长系列降水资料, 为区域乃至全球水热循环过程和水文学研究提供基础资料。修正结果表明, 在大部分地区由风速作用引起的动力损失是主要的误差来源, 但在降水较少的地区湿润和微量降水观测损失也起着重要作用, 全国726 个台站年降水修正量在8~740 mm 之间, 平均约125 mm, 相应的修正幅度在5%~72%, 平均约18%。从时间看, 冬季修正系数大于夏季, 但冬季修正量小于夏季; 从空间分布看, 西北地区年修正量一般小于50 mm, 东南地区大于100 mm, 总修正系数由西北向东南地区减少, 其中西北地区大于30%, 而西南地区小于20%, 这一修正系数高于全球的11%左右的平均修正量。
叶柏生, 杨大庆, 丁永建, 韩添丁 . 中国降水观测误差分析及其修正[J]. 地理学报, 2007 , 62(1) : 3 -13 . DOI: 10.11821/xb200701001
This paper presents the results of bias corrections of Chinese standard precipitation gauge (CSPG) measurements for wind-induced undercatch, trace amount of precipitation and wetting loss. Long-term daily data of precipitation, temperature, and wind speed during 1951-2004 at 726 meteorological stations in China were used for this analysis. It is found that wind-induced gauge undercatch is the greatest error in most regions, and wetting loss and trace amount of precipitation are important in the low precipitation regions in Northwest China. Monthly correction factors (corrected/measured precipitation) differ by location and by type of precipitation. Considerable inter-annual variation of the corrections exists in China due to the fluctuations of wind speed and frequency of precipitation. More importantly, annual precipitation has been increased by 8 to 740 mm with an overall mean of 125 mm at the 726 stations over China due to the bias corrections for the study period. This corresponds to 5% -72% increases (overall mean of 18% at the 726 stations over China) in gauge-measured yearly total precipitation over China. This important finding clearly suggests that annual precipitation in China is much higher than previously reported. The results of this study will be useful to hydrological and climatic studies in China.
Key words: precipitation; bias-correction; China
[1] UNESCO. World Water Balance and Water Resources of the Earth. Studies and Reports in Hydrology, No.25, UNESCO, Paris, 1978. 663pp.
[2] Legates D R. Global and terrestrial precipitation: a comparative assessment of existing climatologies. International Journal of Climatology, 1995, 15: 237-258.
[3] Walsh J E, Kattsov V, Portis D et al. Arctic precipitation and evaporation: model results and observational estimates. Journal of Climate, 1998, 11(1): 72-87.
[4] Sevruk B. Reliability of precipitation measurement. In: Sevruk B (ed.), Proc. International Workshop on Precipitation Measurement, St.Moritz, Switzerland, WMO/IAHS/ETH, 1989. 13-19.
[5] Yang D, Goodison B E, Metcalfe J R et al. Compatibility evaluation of national precipitation gauge measurements. J. of Geophysical Research-Atmospheres, 2001, 106(D2):1481-1492.
[6] Karl T R, Quayle R G, Groisman P Y. Detecting climate variations and change: new challenges for observing and data management system. J. Climate, 1993, 6(8): 1481-1494.
[7] Goodison B E, Louie P Y T, Yang D. WMO solid precipitation measurement intercomparison, final report, WMO/TD-No. 872, WMO, Geneva, 1998, 212pp.
[8] Adam J, Lettenmaier D P. Adjustment of global gridded precipitation for systematic bias. J. of Geophysical Research-Atmospheres, 2003, 108(D9): 4257. doi:10.1029/2002JD002499.
[9] Goodison B E, Sevruk B, Klemm S. WMO solid precipitation measurement intercomparison: Objectives, methodology, analysis. In: Atmospheric Deposition, IAHS publ. No.179, Wallingford, U.K., 1989. 57-64.
[10] Yang D, Shi Y, Kang E et al. Research on analysis and correction of systematic errors in precipitation measurement in Urumqi river basin, Tianshan. In: Proc. International workshop on precipitation measurement, St. Moritz, Switzerland, 1989. 173-179.
[11] Yang D, Shi Y, Kang E et al. Results of solid precipitation measurement intercomparison in the alpine area of Urumqi River Basin. Chinese Science Bulletin, 1991, 36(13): 1105-1109.
[12] Yang D. Research on analysis and correction of systematic errors in precipitation measurement in Urumqi river basin, Tianshan. Dissertation of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, 1988.
[ 杨大 庆. 天山乌鲁木齐河流域降水观测系统误差分析与修正. 中国科学院兰州冰川冻土研究所博士论文, 兰州, 1988.]
[13] Goodison B E, Metcalfe J R. The WMO solid precipitation intercomparison: Canadian assessment. In: WMO Technical Conference on Instruments and Method of Observation, Vienna, Austral, WMO/TD-No.462, WMO, 1992. 221-225.
[14] Yang D, Goodison B E, Metcalfe J R et al. Accuracy of NWS 8-inch standard non-recording precipitation gauge: result of WMO Intercomparison. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 54-68.
[15] Yang D, Goodison B E, Metcalfe J R et al. Accuracy of Tretyakov precipitation gauge: results of WMO Intercomparison. Hydrological Processes, 1995, 9(8): 877-895.
[16] Gunther Th. German participation in the WMO solid precipitation intercomparison: final results. In: Sevruk B (ed.), Proc. Symp. on Precipitation and Evaporation. Lapin M, Vol.1, Bratislava, Slovakia, Slovak Hydrometeorlogical Institute and Swiss Federal Institute of Technology, 1993, 93-102.
[17] Allerup P, Madsen H, Veijen F. A comprehensive model for correcting point precipitation. Nordic Hydrology, 1997, 28: 1-20.
[18] Yang D, Elomaa E, Tuominen A et al. Wind-induced precipitation undercatch of the Hellmann gauges. Nordic Hydrology, 1999, 30: 57-80.
[19] Metcalfe J R, Ishida S, Goodison B E. A corrected precipitation archive for the Northwest Territories. In: Mackenzie Basin Impact Study, Interim Report #2, Proc. Sixth Biennial AES/DIAND Meeting on Northern Climate, Yellowknife, NWT, Canada, 1994, 110-117.
[20] Yang D, Goodison B E, Benson C et al. Adjustment of daily precipitation at 10 climate stations in Alaska: application of WMO intercomparison results. Water Resources Research, 1998, 34(2): 241-256.
[21] Yang D, Ishida S, Goodison B E et al. Bias correction of daily precipitation measurements for Greenland. J. Geophysical Research, 1999, 105(D6): 6171-6182.
[22] Yang D. An improved precipitation climatology for the Arctic Ocean. Geophysical Research Letters, 1999, 26 (11): 1625-1628.
[23] Legates D R, Willmott C J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 1990, 10: 111-127.
[24] Sevruk B, Hamon W R. International comparison of national precipitation gauges with a reference pit gauge. WMO Instrument and Observing Methods Report No.17, WMO, 1984, 111pp.
[25] Aaltonen A, Elomaa E, Tuominen A. Measurement of precipitation. In: Proc. Symp. on Precipitation and Evaporation, edited by B. Sevruk and M. Lapin, Vol.1, Bratislava, Slovakia, Slovak Hydrometeorlogical Institute and Swiss Federal Institute of Technology, 1993, 42-46.
[26] Sevruk B. Method of correction for systematic error in point precipitation measurement for operational use. WMO-No. 589, 1982. 91pp.
[27] Larson L W, Peck E L. Accuracy of precipitation measurements for hydrological modelling. Water Resources Research, 1974, 10(4): 857-863.
[28] Legates D R, DeLiberty T L. Precipitation measurement biases in the United States. Water Resources Bulletin, 1993, 29 (5): 854-861.
[29] Metcalfe J R, Goodison B E. Correction of Canadian winter precipitation data. In: Proc. 8th Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, AMS, 1993. 338-343.
/
〈 | 〉 |