地理学报 ›› 2022, Vol. 77 ›› Issue (1): 228-244.doi: 10.11821/dlxb202201016
收稿日期:
2021-02-25
修回日期:
2021-11-10
出版日期:
2022-01-25
发布日期:
2022-03-25
作者简介:
范泽孟(1977-), 男, 云南镇雄人, 博士, 研究员, 研究方向为土地覆被情景曲面建模、生态模型与系统模拟。E-mail: fanzm@lreis.ac.cn
基金资助:
Received:
2021-02-25
Revised:
2021-11-10
Published:
2022-01-25
Online:
2022-03-25
Supported by:
摘要:
如何实现自然与人文双重驱动下的特大城市群地区土地覆被变化的情景模拟,不仅是当前土地覆被变化研究领域的热点问题,也是城镇化可持续发展研究的核心主题之一。本文在对现有土地覆被变化情景模型缺陷进行分析和修正的基础上,构建了自然要素与人文要素耦合驱动的土地覆被情景曲面建模(SSMLC)方法。结合IPCC 2020年发布的共享社会经济路径(SSPs)与典型浓度路径(RCPs)组合的CMIP6 SSP1-2.6、SSP2-4.5和SSP5-8.5的气候情景数据,以及人口、GDP、交通、政策等人文参数,分别实现了SSP1-2.6、SSP2-4.5和SSP5-8.5情景下的京津冀土地覆被变化的情景模拟。模拟结果表明:SSMLC对京津冀地区土地覆被变化模拟的总体精度为93.52%;京津冀地区的土地覆被在2020—2040时段内的变化强度最高(3.12%/10a),2040年以后的变化强度将逐渐减缓;在2020—2100年间,建设用地增加速度最快,增加率为5.07%/10a。湿地的减少速度最快,减少率为3.10%/10a。2020—2100时段内的京津冀土地覆被在SSP5-8.5情景下的变化强度整体高于在SSP1-2.6和SSP2-4.5情景下的变化强度;GDP、人口、交通和政策等人文因子对京津冀地区耕地、建设用地、湿地和水体的影响强度高于对其他土地覆被类型的影响强度。研究结果证实了SSMLC模型能够有效模拟和定量刻画京津冀地区土地覆被空间分布格局在未来不同情景的时空变化趋势和强度,模拟结果可为京津冀协同一体化的国土空间优化配置与规划、以及生态环境建设提供辅助依据和数据支撑。
范泽孟. 基于SSP-RCP不同情景的京津冀地区土地覆被变化模拟[J]. 地理学报, 2022, 77(1): 228-244.
FAN Zemeng. Simulation of land cover change in Beijing-Tianjin-Hebei region under different SSP-RCP scenarios[J]. Acta Geographica Sinica, 2022, 77(1): 228-244.
表1
每种土地覆被类型的模拟精度对比分析
土地覆被 类型 | 2020年土地覆被 现状值(km2) | 2020年土地覆被 模拟值(km2) | 模拟 精度(%) |
---|---|---|---|
常绿针叶林 | 1206 | 1275 | 94.28 |
落叶针叶林 | 2561 | 2801 | 90.63 |
落叶阔叶林 | 20456 | 22931 | 87.90 |
混交林 | 1507 | 1582 | 95.02 |
灌丛 | 17490 | 19079 | 90.91 |
草地 | 32923 | 31153 | 94.62 |
湿地 | 3007 | 2879 | 95.74 |
耕地 | 124170 | 121162 | 97.58 |
建设用地 | 8901 | 9475 | 93.55 |
裸露或稀少植被 | 709 | 665 | 93.79 |
水体 | 1979 | 1907 | 96.36 |
表2
SSP1-2.6情景的京津冀土地覆被面积变化(km2)
土地覆被类型 | 2020年 | 2040年 | 2070年 | 2100年 | 10 a变化率(%) |
---|---|---|---|---|---|
常绿针叶林 | 1206 | 1251 | 1291 | 1295 | 0.92 |
落叶针叶林 | 2561 | 2795 | 2953 | 2957 | 1.93 |
落叶阔叶林 | 20456 | 21427 | 22008 | 22103 | 1.01 |
混交林 | 1507 | 1598 | 1601 | 1617 | 0.91 |
灌丛 | 17490 | 17667 | 17703 | 18033 | 0.39 |
草地 | 32923 | 32732 | 32281 | 32162 | -0.29 |
湿地 | 3007 | 2736 | 2495 | 2487 | -2.16 |
耕地 | 124170 | 121692 | 120104 | 119761 | -0.44 |
建设用地 | 8901 | 10377 | 11875 | 11912 | 4.23 |
裸露或稀少植被 | 709 | 663 | 633 | 621 | -1.55 |
水体 | 1979 | 1971 | 1965 | 1961 | -0.11 |
表3
SSP2-4.5情景的京津冀土地覆被面积变化(km2)
土地覆被类型 | 2020年 | 2040年 | 2070年 | 2100年 | 10 a变化率(%) |
---|---|---|---|---|---|
常绿针叶林 | 1206 | 1258 | 1295 | 1304 | 1.02 |
落叶针叶林 | 2561 | 2897 | 2957 | 2987 | 2.08 |
落叶阔叶林 | 20456 | 21273 | 22051 | 22937 | 1.52 |
混交林 | 1507 | 1509 | 1636 | 1864 | 2.96 |
灌丛 | 17490 | 17604 | 17593 | 18675 | 0.85 |
草地 | 32923 | 32453 | 32217 | 31397 | -0.58 |
湿地 | 3007 | 2679 | 2529 | 2415 | -2.46 |
耕地 | 124170 | 121502 | 120273 | 118625 | -0.56 |
建设用地 | 8901 | 11093 | 11794 | 12145 | 4.56 |
裸露或稀少植被 | 709 | 672 | 601 | 603 | -1.87 |
水体 | 1979 | 1969 | 1963 | 1957 | -0.14 |
表4
SSP5-8.5情景的京津冀土地覆被面积变化(km2)
土地覆被类型 | 2020年 | 2040年 | 2070年 | 2100年 | 10 a变化率(%) |
---|---|---|---|---|---|
常绿针叶林 | 1206 | 1272 | 1315 | 1311 | 1.09 |
落叶针叶林 | 2561 | 2901 | 3011 | 2987 | 2.08 |
落叶阔叶林 | 20456 | 22305 | 22814 | 25095 | 2.83 |
混交林 | 1507 | 1533 | 1581 | 1524 | 0.14 |
灌丛 | 17490 | 17502 | 17899 | 19797 | 1.65 |
草地 | 32923 | 32524 | 33107 | 31351 | -0.60 |
湿地 | 3007 | 2632 | 2492 | 2216 | -3.29 |
耕地 | 124170 | 120601 | 118241 | 115463 | -0.88 |
建设用地 | 8901 | 11047 | 11991 | 12759 | 5.42 |
裸露或稀少植被 | 709 | 667 | 557 | 513 | -3.46 |
水体 | 1979 | 1925 | 1901 | 1893 | -0.54 |
[1] | Turner B L I, Skole D L, Sanderson S, et al. Land-use and land-cover change, Science/research plan. Global Change Report, 1995, 43: 669-679. |
[2] |
Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth's ecosystems. Science, 1997, 277(5325): 494-499.
doi: 10.1126/science.277.5325.494 |
[3] |
Yue T X, Fan Z M, Liu J Y. Scenarios of land cover in China. Global and Planetary Change, 2007, 55(4): 317-342.
doi: 10.1016/j.gloplacha.2006.10.002 |
[4] | Fan zemeng, Yue Tianxiang, Liu Jiyuan, et al. Spatial and temporal distribution of land cover scenairos in China. Acta Geographica Sinica, 2005, 60(6): 941-952. |
[ 范泽孟, 岳天祥, 刘纪远, 等. 中国土地覆盖时空变化未来情景分析. 地理学报, 2005, 60(6): 941-952.] | |
[5] |
Solomon A M. Transient response of forests to CO2 induced climate change: Simulation modeling experiments in eastern North America. Oecologia, 1986, 68(4): 567-579.
doi: 10.1007/BF00378773 pmid: 28311714 |
[6] |
Whittaker R H. Evolution and measurement of species diversity. Taxon, 1972, 21(2/3): 213-251.
doi: 10.2307/1218190 |
[7] |
Fan Z M, Li J, Yue T X, et al. Scenarios of land cover in Karst area of Southwestern China. Environmental Earth Sciences, 2015, 74(8): 6407-6420.
doi: 10.1007/s12665-015-4223-z |
[8] |
Belotelov N V, Bogatyrev B G, Kirilenko A P, et al. Modelling of time-dependent biome shifts under global climate changes. Ecological Modelling, 1996, 87(1-3): 29-40.
doi: 10.1016/0304-3800(94)00200-2 |
[9] |
Hochstrasser T, Kröel-Dulay G, Peters D P C, et al. Vegetation and climate characteristics of arid and semi-arid grasslands in North America and their biome transition zone. Journal of Arid Environments, 2002, 51(1): 55-78.
doi: 10.1006/jare.2001.0929 |
[10] |
Fan Z M, Li J, Yue T X. Land-cover changes of biome transition zones in Loess Plateau of China. Ecological Modelling, 2013, 252: 129-140.
doi: 10.1016/j.ecolmodel.2012.07.039 |
[11] | Ichinose T, Otsubo K. Temporal structure of land use change in Asia. Journal of Global Environment Engineering, 2003, 9: 41-51. |
[12] | Alcamo J, Kreileman G J J, Krol M S, et al. Modeling the global society-biosphere-climate system: Part 1: Model description and testing. Water Air & Soil Pollution, 1994, 76(1/2): 1-35. |
[13] |
Verburg P H, Veldkamp A, Fresco L O. Simulation of changes in the spatial pattern of land use in China. Applied Geography, 1999, 19(3): 211-233.
doi: 10.1016/S0143-6228(99)00003-X |
[14] |
Verburg P H, Soepboer W, Veldkamp A, et al. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 2002, 30(3): 391-405.
pmid: 12148073 |
[15] |
Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 1997, 24(2): 247-261.
doi: 10.1068/b240247 |
[16] |
He C Y, Shi P J, Chen J, et al. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. Science in China Series D: Earth Sciences, 2005, 48(11): 1979-1989.
doi: 10.1360/04yd0248 |
[17] |
Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 2017, 168: 94-116.
doi: 10.1016/j.landurbplan.2017.09.019 |
[18] |
Fan Z M, Bai R Y, Yue T X. Scenarios of land cover in Eurasia under climate change. Journal of Geographical Sciences, 2020, 30(1): 3-17.
doi: 10.1007/s11442-020-1711-1 |
[19] |
Fang Chuanglin. Progress and the future direction of research into urban agglomeration in China. Acta Geographica Sinica, 2014, 69(8): 1130-1144.
doi: 10.11821/dlxb201408009 |
[ 方创琳. 中国城市群研究取得的重要进展与未来发展方向. 地理学报, 2014, 69(8): 1130-1144.] | |
[20] |
Lu Dadao. Function orientation and coordinating development of subregions within the Jing-Jin-Ji urban agglomeration. Progress in Geography, 2015, 34(3): 265-270.
doi: 10.11820/dlkxjz.2015.03.001 |
[ 陆大道. 京津冀城市群功能定位及协同发展. 地理科学进展, 2015, 34(3): 265-270.] | |
[21] |
Fang Chuanglin, Zhou Chenghu, Gu Chaolin, et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 2016, 71(4): 531-550.
doi: 10.11821/dlxb201604001 |
[ 方创琳, 周成虎, 顾朝林, 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径. 地理学报, 2016, 71(4): 531-550.] | |
[22] |
Fang Chuanglin. Theoretical foundation and patterns of coordinated development of the Beijing-Tianjin-Hebei urban agglomeration. Progress in Geography, 2017, 36(1): 15-24.
doi: 10.18306/dlkxjz.2017.01.002 |
[ 方创琳. 京津冀城市群协同发展的理论基础与规律性分析. 地理科学进展, 2017, 36(1): 15-24.] | |
[23] | Ouyang Xiao, Zhu Xiang. Spatio-temporal characteristics of urban land expansion in Chinese urban agglomerations. Acta Geographica Sinica, 2020, 75(3): 571-588. |
[ 欧阳晓, 朱翔. 中国城市群城市用地扩张时空动态特征. 地理学报, 2020, 75(3): 571-588.] | |
[24] | Chen Yu, Jin Fengjun, Lu Yuqi, et al. Development history and accessibility evolution of land transportation network in Beijing-Tianjin-Hebei region. Acta Geographica Sinica, 2017, 72(12): 2252-2264. |
[ 陈娱, 金凤君, 陆玉麒, 等. 京津冀地区陆路交通网络发展过程及可达性演变特征. 地理学报, 2017, 72(12): 2252-2264.] | |
[25] | Fan Jie. The Integrated Regional Planning in the Metropolis Region: Beijing, Tianjin and Hebei. Beijing: Beijing: Science Press, 2008. |
[ 樊杰. 京津冀都市圈区域综合规划研究. 北京: 科学出版社, 2008.] | |
[26] | Chen Jie, Lu Feng. Location advantage and accessibility evaluation on Beijing-Tianjin-Hebei metropolitan area. Geography and Geo-Information Science, 2008, 24(2): 53-56. |
[ 陈洁, 陆锋. 京津冀都市圈城市区位与交通可达性评价. 地理与地理信息科学, 2008, 24(2): 53-56.] | |
[27] |
Wang Liwei, Feng Changchun. Spatial expansion pattern and its driving dynamics of Beijing-Tianjin-Hebei metropolitan region: Based on nighttime light data. Acta Geographica Sinica, 2016, 71(12): 2155-2169.
doi: 10.11821/dlxb201612007 |
[ 王利伟, 冯长春. 转型期京津冀城市群空间扩展格局及其动力机制: 基于夜间灯光数据方法. 地理学报, 2016, 71(12): 2155-2169.] | |
[28] |
Wang Haijun, Zhang Bin, Liu Yaolin, et al. Multi-dimensional analysis of urban expansion patterns and their driving forces based on the center of gravity-GTWR model: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018, 73(6): 1076-1092.
doi: 10.11821/dlxb201806007 |
[ 王海军, 张彬, 刘耀林, 等. 基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析. 地理学报, 2018, 73(6): 1076-1092.] | |
[29] | Zhu Erjuan. Production upgrading and integration in the process of the integration of Beijing-Tianjin-Hebei. Economic Geography, 2009, 29(6): 881-886. |
[ 祝尔娟. 京津冀一体化中的产业升级与整合. 经济地理, 2009, 29(6): 881-886.] | |
[30] |
Zhao N, Jiao Y M, Ma T, et al. Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Science of the Total Environment, 2019, 688: 1005-1015.
doi: 10.1016/j.scitotenv.2019.06.374 |
[31] | Zhang Lixia, Chen Xiaolong, Xin Xiaoge. Short commentary on CMIP6 scenario model intercomparison project(ScenarioMIP). Climate Change Research, 2019, 15(5): 519-525. |
[ 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述. 气候变化研究进展, 2019, 15(5): 519-525. | |
[32] |
Su B D, Huang J L, Mondal S K, et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmospheric Research, 2021, 250: 105375. DOI: 10.1016/j.atmosres.2020.105375.
doi: 10.1016/j.atmosres.2020.105375 |
[33] | Fu Jingying, Jiang Dong, Huang Yaohuan. Population dataset of 1 km×1 km in China. Acta Geographica Sinica, 2014, 69(plus): 41-44. |
[ 付晶莹, 江东, 黄耀欢. 中国公里网格人口分布数据集. 地理学报, 2014, 69(S): 41-44.] | |
[34] | Huang Yaohuan, Jiang Dong, Fu Jingying. GDP dataset of 1 km×1 km in China. Acta Geographica Sinica, 2014, 69(Suppl.): 45-48. |
[ 黄耀欢, 江东, 付晶莹. 中国公里网格GDP分布数据集. 地理学报, 2014, 69(S): 45-48.] | |
[35] | Jiang Tong, Zhao Jing, Jing Cheng, et al. National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Climate Change Research, 2017, 13(2): 128-137. |
[ 姜彤, 赵晶, 景丞, 等. IPCC共享社会经济路径下中国和分省人口变化预估. 气候变化研究进展, 2017, 13(2): 128-137.] | |
[36] | Jiang Tong, Zhao Jing, Cao Lige, et al. Projection of national and provincial economy under the shared socioeconomic pathways in China. Climate Change Research, 2018, 14(1): 50-58. |
[ 姜彤, 赵晶, 曹丽格, 等. 共享社会经济路径下中国及分省经济变化预测. 气候变化研究进展, 2018, 14(1): 50-58.] | |
[37] | Fan Zemeng, Zhang Xuan, Li Jing, et al. Transition trends of land-cover in national nature reserves of China. Acta Geographica Sinica, 2012, 67(12): 1623-1633. |
[ 范泽孟, 张轩, 李婧, 等. 国家级自然保护区土地覆盖类型转换趋势. 地理学报, 2012, 67(12): 1623-1633.] | |
[38] |
Fan Zemeng, Huang Yan, Yue Tianxiang. Scenarios simulation of vascular plant species abundance distribution on Qinghai-Tibet Plateau. Acta Geographica Sinica, 2018, 73(1): 164-176.
doi: 10.11821/dlxb201801014 |
[ 范泽孟, 黄言, 岳天祥. 青藏高原维管植物物种丰富度分布的情景模拟. 地理学报, 2018, 73(1): 164-176.] | |
[39] | Liu Jiyuan, Zhang Zengxiang, Xu Xinliang, et al. Spatial patterns and driving forces of land use change in China in the early 21st century. Acta Geographica Sinica, 2009, 64(12): 1411-1420. |
[ 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析. 地理学报, 2009, 64(12): 1411-1420.] | |
[40] |
Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 2021, 13(6): 2753-2776.
doi: 10.5194/essd-13-2753-2021 |
[41] |
Yue T X, Du Z P, Song D J, et al. A new method of surface modeling and its application to DEM construction. Geomorphology, 2007, 91(1/2): 161-172.
doi: 10.1016/j.geomorph.2007.02.006 |
[42] |
Yue T X, Fan Z M, Liu J Y, et al. Scenarios of major terrestrial ecosystems in China. Ecological Modelling, 2006, 199(3): 363-376.
doi: 10.1016/j.ecolmodel.2006.05.026 |
[43] |
Fan Z M, Fan B, Yue T X. Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Science China Earth Sciences, 2019, 62(10): 1607-1618.
doi: 10.1007/s11430-018-9374-3 |
[44] | Yue T X. Surface Modelling: High Accuracy and High Speed Methods. New York: CRC Press, 2011. |
[45] |
Yue T X, Zhao N, Fan Z M, et al. CMIP5 downscaling and its uncertainty in China. Global and Planetary Change, 2016, 146: 30-37.
doi: 10.1016/j.gloplacha.2016.09.003 |
[46] |
Yue T X, Zhao N, Liu Y, et al. A fundamental theorem for eco-environmental surface modelling and its applications. Science China-Earth Sciences, 2020, 63(8): 1092-1112.
doi: 10.1007/s11430-019-9594-3 |
[47] |
Holdridge L R. Determination of world plant formations from simple climatic data. Science, 1947, 105(2727): 367-368.
pmid: 17800882 |
[48] |
Yue T X, Fan Z M, Liu J Y. Changes of major terrestrial ecosystems in China since 1960. Global and Planetary Change, 2005, 48(4): 287-302.
doi: 10.1016/j.gloplacha.2005.03.001 |
[49] |
Zhao P J. Planning for social inclusion: The impact of socioeconomic inequities on the informal development of farmland in suburban Beijing. Land Use Policy, 2016, 57: 431-443.
doi: 10.1016/j.landusepol.2016.06.010 |
[50] |
Yue W Z, Qiu S S, Xu H, et al. Polycentric urban development and urban thermal environment: A case of Hangzhou, China. Landscape and Urban Planning, 2019, 189: 58-70.
doi: 10.1016/j.landurbplan.2019.04.008 |
[51] | Gu Chaolin, Guan Weihua, Liu Helin. Chinese urbanization 2050: SD modeling and process simulation. Science China: Terrae, 2017, 47(7): 818-832. |
[ 顾朝林, 管卫华, 刘合林. 中国城镇化2050: SD模型与过程模拟. 中国科学: 地球科学, 2017, 47(7): 818-832.] | |
[52] |
Wang Kaiyong, Ding Jun, Wang Fuyuan. Influence of the implementation of the universal two-child policy on demographic structure and population spatial distribution in China. Progress in Geography, 2016, 35(11): 1305-1316.
doi: 10.18306/dlkxjz.2016.11.001 |
[ 王开泳, 丁俊, 王甫园. 全面二孩政策对中国人口结构及区域人口空间格局的影响. 地理科学进展, 2016, 35(11): 1305-1316.] | |
[53] | Li Xiaoyong, Kuang Wenhui. Spatio-temporal trajectories of urban land use change during 1980-2015 and future scenario simulation in Beijing-Tianjin-Hebei urban agglomeration. Economic Geography, 2019, 39(3): 187-194, 200. |
[ 李孝永, 匡文慧. 京津冀1980—2015年城市土地利用变化时空轨迹及未来情景模拟. 经济地理, 2019, 39(3): 187-194, 200.] |
[1] | 周侃, 李会, 申玉铭. 京津冀地区县域环境胁迫时空格局及驱动因素[J]. 地理学报, 2020, 75(9): 1934-1947. |
[2] | 马宁, 何丽烨, 梁苏洁, 郭军. 京津冀冬季冷空气过程的低频特征及西伯利亚高压低频变化的影响[J]. 地理学报, 2020, 75(3): 485-496. |
[3] | 王向东, 刘小茜, 裴韬, 王振波. 基于技术效率测算的京津冀城市土地集约利用潜力评价[J]. 地理学报, 2019, 74(9): 1853-1865. |
[4] | 李博,李启航,孙威. 地理学视角的京津冀地区工业企业融资成本分析[J]. 地理学报, 2019, 74(6): 1149-1162. |
[5] | 孙思奥, 郑翔益, 刘海猛. 京津冀城市群虚拟水贸易的近远程分析[J]. 地理学报, 2019, 74(12): 2631-2645. |
[6] | 王海军, 张彬, 刘耀林, 刘艳芳, 徐姗, 邓羽, 赵雲泰, 陈宇琛, 洪松. 基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析[J]. 地理学报, 2018, 73(6): 1076-1092. |
[7] | 孙威,毛凌潇. 基于CiteSpace方法的京津冀协同发展研究演化[J]. 地理学报, 2018, 73(12): 2378-2391. |
[8] | 张学波,于伟,张亚利,宋金平,王振波. 京津冀地区经济增长的时空分异与影响因素[J]. 地理学报, 2018, 73(10): 1985-2000. |
[9] | 刘海猛,方创琳,黄解军,朱向东,周艺,王振波,张蔷. 京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报, 2018, 73(1): 177-191. |
[10] | 匡文慧, 杨天荣, 颜凤芹. 河北雄安新区建设的区域地表本底特征与生态管控[J]. 地理学报, 2017, 72(6): 947-959. |
[11] | 葛全胜, 江东, 陆锋, 邓祥征, 王绍强. 地缘环境系统模拟研究探讨[J]. 地理学报, 2017, 72(3): 371-382. |
[12] | 陈娱, 金凤君, 陆玉麒, 陈卓, 杨宇. 京津冀地区陆路交通网络发展过程及可达性演变特征[J]. 地理学报, 2017, 72(12): 2252-2264. |
[13] | 杨雪, 张文忠. 基于栅格的区域人居自然和人文环境质量综合评价——以京津冀地区为例[J]. 地理学报, 2016, 71(12): 2141-2154. |
[14] | 王利伟, 冯长春. 转型期京津冀城市群空间扩展格局及其动力机制研究——基于夜间灯光数据方法[J]. 地理学报, 2016, 71(12): 2155-2169. |
[15] | 席强敏, 李国平. 京津冀生产性服务业空间分工特征及溢出效应[J]. 地理学报, 2015, 70(12): 1926-1938. |