地理学报 ›› 2021, Vol. 76 ›› Issue (11): 2685-2696.doi: 10.11821/dlxb202111007
收稿日期:
2020-05-18
修回日期:
2021-03-25
出版日期:
2021-11-25
发布日期:
2022-01-25
通讯作者:
许有鹏(1956-), 男, 江苏南京人, 教授, 博士生导师, 主要从事流域水文水资源评价与防洪减灾研究。E-mail: xuyp305@163.com作者简介:
陆苗(1990-), 女, 安徽蚌埠人, 博士生, 主要从事水文水资源方面研究。E-mail: giser_lu@163.com
基金资助:
LU Miao(), XU Youpeng(
), GAO Bin, ZHOU Caiyu
Received:
2020-05-18
Revised:
2021-03-25
Published:
2021-11-25
Online:
2022-01-25
Supported by:
摘要:
在水利工程建设及其人为调度的影响下,平原河网水系连通程度发生了巨大变化。为此,针对平原河网区水文连通难以模拟的问题,在现有水系结构连通的基础上,将水利工程的运行纳入水文连通的评价体系,提出一种适用于平原河网区水利工程调控下的水文连通评价指数(SLCI)。该指数从水闸通过概率、水流分流能力及河网连通程度,从点—线—面分尺度逐步评价不同调度规则下汛期与非汛期水文连通的动态变化。并且,该指数以格网为评价单元,结合反映地理要素空间集聚性的Getis-Ord Gi*指数,相比行政单元、水利片区等大尺度评价单元,能够更精细地描述水文连通空间上的分异性。太湖流域武澄锡虞区是一个典型的平原河网区,本指数在该区域进行了应用,得到以下结果:受到水闸调控的作用,武澄锡虞区非汛期时平均水文连通指数为0.66,汛期时平均水文连通指数则为0.50。另外,非汛期时水文连通集聚空间范围比汛期时高5%。其中,非汛期与汛期连通高值区SLCI值分别为0.93与0.87,低值区SLCI值分别为0.25与0.16。本文提出的水文连通评价指数可为有关部门开展长三角地区水系建设工作提供理论支撑,也为开展人为调控下平原河网区水文连通评价提供新思路。
陆苗, 许有鹏, 高斌, 周才钰. 平原河网区水利工程调控下水文连通变化[J]. 地理学报, 2021, 76(11): 2685-2696.
LU Miao, XU Youpeng, GAO Bin, ZHOU Caiyu. Variations of hydrological connectivity regulated by sluices in a delta plain[J]. Acta Geographica Sinica, 2021, 76(11): 2685-2696.
[1] |
Scott G Leibowitz, Parker J Wigington Jr, Kate A Schofield, et al. Connectivity of streams and wetlands to downstream waters: An integrated systems framework. Journal of the American Water Resources Association, 2018, 54(2):298-322.
doi: 10.1111/1752-1688.12631 pmid: 30078985 |
[2] | Wang Zhonggen, Li Zongli, Liu Changming, et al. Discussion on water cycle mechanism of interconnected river system network. Journal of Natural Resources, 2011, 26(3):523-529. |
[王中根, 李宗礼, 刘昌明, 等. 河湖水系连通的理论探讨. 自然资源学报, 2011, 26(3):523-529.] | |
[3] | Yang Kai, Yuan Wen, Zhao Jun, et al. Stream structure characteristics and its urbanization responses to tidal river system. Acta Geographica Sinica, 2004, 59(4):557-564. |
[杨凯, 袁雯, 赵军, 等. 感潮河网地区水系结构特征及城市化响应. 地理学报, 2004, 59(4):557-564.] | |
[4] |
Deng Xiaojun, Xu Youpeng, Han Longfei, et al. Spatial-temporal changes of river systems in Jiaxing under the background of urbanization. Acta Geographica Sinica, 2016, 71(1):75-85.
doi: 10.11821/dlxb201601006 |
[邓晓军, 许有鹏, 韩龙飞, 等. 城市化背景下嘉兴市河流水系的时空变化. 地理学报, 2016, 71(1):75-85.] | |
[5] | Zhou Hongjian, Shi Peijun, Wang Jing'ai, et al. River network change and its ecological effects in Shenzhen region in recent 30 years. Acta Geographica Sinica, 2008, 63(9):969-980. |
[周洪建, 史培军, 王静爱, 等. 近30年来深圳河网变化及其生态效应分析. 地理学报, 2008, 63(9):969-980.] | |
[6] |
Bracken J L, Croke J. The concept of hydrological connectivity and its contribution to understanding runoff dominated geomorphic systems. Hydrological Processes, 2010, 21(13):1749-1763.
doi: 10.1002/(ISSN)1099-1085 |
[7] | Xia Jun, Gao Yang, Zuo Qiting, et al. The characteristics of river system connectivity and its advantages and disadvantages. Progress in Geography, 2012, 31(1):26-31. |
[夏军, 高扬, 左其亭, 等. 河湖水系连通特征及其利弊. 地理科学进展, 2012, 31(1):26-31.] | |
[8] | Cui Guangbo, Chen Xing, Xiang Long, et al. Evaluation of water environment improvement by interconnected river network in plain area. Journal of Hydraulic Engineering, 2017, 48(12):1429-1437. |
[崔广柏, 陈星, 向龙, 等. 平原河网区水系连通改善水环境效果评估. 水利学报, 2017, 48(12):1429-1437.] | |
[9] | Xia Jihong, Chen Yongming, Zhou Ziye, et al. Review of mechanism and quantifying methods of river system connectivity. Advances in Water Science, 2017, 28(5):780-787. |
[夏继红, 陈永明, 周子晔, 等. 河流水系连通性机制及计算方法综述. 水科学进展, 2017, 28(5):780-787.] | |
[10] |
Smith W M, Bracken J L, Cox J N. Toward a dynamic representation of hydrological connectivity at the hillslope scale in semiarid areas. Water Resources Research, 2010, 46(12):W12540. DOI: 10.1029/2009WR008496.
doi: 10.1029/2009WR008496 |
[11] |
Karim F, Kinsey-Henderson A, Wallace J, et al. Modelling wetland connectivity during overbank flooding in a tropical floodplain in north Queensland, Australia. Hydrological Processes, 2012, 26(18):2710-2723.
doi: 10.1002/hyp.v26.18 |
[12] |
Bracken L J, Wainwright J, Ali G A, et al. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 2013, 119:17-34.
doi: 10.1016/j.earscirev.2013.02.001 |
[13] | Gao Yuqing, Xiao Xuan, Ding Mingming, et al. Evaluation of plain river network hydrologic connectivity based on improved graph theory. Water Resources Protection, 2018, 34(1):18-23. |
[高玉琴, 肖璇, 丁鸣鸣, 等. 基于改进图论法的平原河网水系连通性评价. 水资源保护, 2018, 34(1):18-23.] | |
[14] | Xu Guanglai, Xu Youpeng, Wang Liuyan. Evaluation of river network connectivity based on flow resistance and graph theory. Advances in Water Science, 2012, 23(6):776-781. |
[徐光来, 许有鹏, 王柳艳. 基于水流阻力与图论的河网连通性评价. 水科学进展, 2012, 23(6):776-781.] | |
[15] |
Singh M, Sinha R. Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Science of the Total Environment, 2019, 651:2473-2488.
doi: 10.1016/j.scitotenv.2018.10.139 |
[16] |
Ramulifho P, Rivers-Moore N, Dallas H, et al. A conceptual framework towards more holistic freshwater conservation planning through incorporation of stream connectivity and thermal vulnerability. Journal of Hydrology, 2018, 556:173-181.
doi: 10.1016/j.jhydrol.2017.11.005 |
[17] | Huang Cao, Chen Yehua, Li Zhiwei, et al. Optimization of water system pattern and connectivity in the Dongting Lake Area. Advances in Water Science, 2019, 30(5):661-672. |
[黄草, 陈叶华, 李志威, 等. 洞庭湖区水系格局及连通性优化. 水科学进展, 2019, 30(5):661-672.] | |
[18] |
Cabezas A, Gonzalez-Sanchis M, Gallardo B, et al. Using continuous surface water level and temperature data to characterize hydrological connectivity in riparian wetlands. Environmental Monitoring and Assessment, 2011, 183(1-4):485-500.
doi: 10.1007/s10661-011-1934-9 pmid: 21400244 |
[19] |
Han Longfei, Xu Youpeng, Yang Liu, et al. Temporal and spatial change of stream structure in Yangtze River Delta and its driving forces during 1960s-2010s. Acta Geographica Sinica, 2015, 70(5):819-827.
doi: 10.11821/dlxb201505012 |
[韩龙飞, 许有鹏, 杨柳, 等. 近50年长三角地区水系时空变化及其驱动机制. 地理学报, 2015, 70(5):819-827.] | |
[20] |
Yin Y X, Xu Y P, Chen Y. Relationship between changes of river-lake networks and water levels in typical regions of Taihu Lake Basin, China. Chinese Geographical Science, 2012, 22(6):673-682.
doi: 10.1007/s11769-012-0570-9 |
[21] |
Stammler K L, Yates A G, Bailey R C. Buried streams: Uncovering a potential threat to aquatic ecosystems. Landscape and Urban Planning, 2013, 114:37-41.
doi: 10.1016/j.landurbplan.2013.02.008 |
[22] | Strahler N A. The nature of induced erosion and aggradation//Thomas W L. Man's Role in Changing the Face of the Earth. Chicago: University of Chicago Press, 1956. |
[23] |
Wu Lei, Xu Youpeng, Xu Yu, et al. Impact of rapid urbanization on river system in a river network plain. Acta Geographica Sinica, 2018, 73(1):104-114.
doi: 10.11821/dlxb201801009 |
[吴雷, 许有鹏, 徐羽, 等. 平原水网地区快速城市化对河流水系的影响. 地理学报, 2018, 73(1):104-114.] | |
[24] |
López-Vicente M, Ben-Salem N. Computing structural and functional flow and sediment connectivity with a new aggregated index: A case study in a large Mediterranean catchment. Science of the Total Environment, 2019, 651:179-191.
doi: 10.1016/j.scitotenv.2018.09.170 |
[25] |
Deng X J, Xu Y P, Han L F. Impacts of human activities on the structural and functional connectivity of a river network in the Taihu Plain. Land Degradation and Development, 2018, 29:2575-2588.
doi: 10.1002/ldr.v29.8 |
[26] |
Deng X J, Xu Y P, Han L F, et al. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. Journal of Hydrology, 2018, 566:846-859.
doi: 10.1016/j.jhydrol.2018.09.060 |
[27] | Xia Jihong, Chen Yongming, Zhou Ziye, et al. Research on mechanism and calculation method of river system connectivity. Advances in Water Science, 2017, 28(5):780-787. |
[夏继红, 陈永明, 周子晔, 等. 河流水系连通性机制及计算方法综述. 水科学进展, 2017, 28(5):780-787.] | |
[28] | Xu Yu, Xu Youpeng, Wang Qiang, et al. Relationship between urbanization and river network change in Taihu Lake basin, China. Advances in Water Science, 2018, 29(4):473-481. |
[徐羽, 许有鹏, 王强, 等. 太湖平原河网区城镇化发展与水系变化关系. 水科学进展, 2018, 29(4):473-481.] | |
[29] | Wang Zhiheng, Hu Zhuowei, Zhao Wenji, et al. Extracting optimum statistical unit for relief degree of land surface with CUSUM algorithm. Science of Surveying and Mapping, 2014, 39(6):59-64. |
[王志恒, 胡卓玮, 赵文吉, 等. 应用累积和分析算法的地形起伏度最佳统计单元确定. 测绘科学, 2014, 39(6):59-64.] | |
[30] |
McKay S K, Schramski J R, Conyngham J N, et al. Assessing upstream fish passage connectivity with network analysis. Ecological Applications, 2013, 23:1396-1409.
doi: 10.1890/12-1564.1 |
[31] |
Cote D, Kehler D G, Bourne C, et al. A new measure of longitudinal connectivity for stream networks. Landscape Ecology, 2009, 24(1):101-113.
doi: 10.1007/s10980-008-9283-y |
[32] |
Lu M, Xu Y P, Shan N, et al. Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. Science of The Total Environment, 2019, 673:64-73.
doi: 10.1016/j.scitotenv.2019.03.413 |
[33] |
Steinskog D J, Tjøstheim D B, Kvamstø N G. A cautionary note on the use of the Kolmogorov-Smirnov test for normality. Monthly Weather Review, 2007, 135:1151-1157.
doi: 10.1175/MWR3326.1 |
[34] | Lu Miao, Gao Chao, Su Buda, et al. Spatial distribution and probabilistic characteristics of extreme precipitation in the Huaihe River basin. Journal of Natural Disasters, 2015, 24(5):162-170. |
[陆苗, 高超, 苏布达, 等. 淮河流域极端降水空间分布及概率特征. 自然灾害学报, 2015, 24(5):162-170.] | |
[35] |
Getis A, Ord J K. The analysis of spatial association by use of distance statistics. Geographical Analysis, 1992, 24(3):189-206.
doi: 10.1111/gean.1992.24.issue-3 |
[36] |
Deng X J, Xu Y P. Degrading flood regulation function of river systems in the urbanization process. Science of The Total Environment, 2018, 622/623:1379-1390.
doi: 10.1016/j.scitotenv.2017.12.088 |
[37] | Wang Jing, Yu Chaoqing, Cheng Xiaotao, et al. Simulating the impacts of polder areas on distribution of flooding in Taihu Basin for broad scale flood analysis. Water Resources and Hydropower Engineering, 2010(9):95-100. |
[王静, 喻朝庆, 程晓陶, 等. 太湖流域大尺度洪水分析中对圩区影响洪涝分布的模拟. 水利水电技术, 2010(9):95-100.] | |
[38] | Wang Chuanhai, Wang Juan, Cheng Wenhui, et al. Numerical simulation of runoff yield and confluence in plain area. Journal of Hohai University (Natural Sciences), 2007, 35(6):627-632. |
[王船海, 王娟, 程文辉, 等. 平原区产汇流模拟. 河海大学学报(自然科学版), 2007, 35(6):627-632.] | |
[39] |
Zuo Qiting, Cui Guotao. Quantitative evaluation of human activities affecting an interconnected river system network. Acta Geographica Sinica, 2020, 75(7):1483-1493.
doi: 10.11821/dlxb202007011 |
[左其亭, 崔国韬. 人类活动对河湖水系连通的影响评估. 地理学报, 2020, 75(7):1483-1493.] |
[1] | 吴雷,许有鹏,徐羽,袁甲,项捷,徐兴,徐勇. 平原水网地区快速城市化对河流水系的影响[J]. 地理学报, 2018, 73(1): 104-114. |
[2] | 邓晓军, 许有鹏, 韩龙飞, 李广, 王跃峰, 项捷, 徐光来. 城市化背景下嘉兴市河流水系的时空变化[J]. 地理学报, 2016, 71(1): 75-85. |