地理学报 ›› 2021, Vol. 76 ›› Issue (9): 2130-2141.doi: 10.11821/dlxb202109007
冯三三1,2(), 卢宏玮2(
), 姚天次2, 刘云龙1, 唐孟1, 冯玮2, 卢静昭1
收稿日期:
2020-06-29
修回日期:
2020-12-09
出版日期:
2021-09-25
发布日期:
2021-11-25
通讯作者:
卢宏玮(1980-), 女, 吉林延边人, 研究员, 主要从事环境系统分析研究。E-mail: luhw@igsnrr.ac.cn作者简介:
冯三三(1993-), 男, 山西吕梁人, 博士生, 主要从事环境微塑料污染研究。E-mail: sansanf123@163.com
基金资助:
FENG Sansan1,2(), LU Hongwei2(
), YAO Tianci2, LIU Yunlong1, TANG Meng1, FENG Wei2, LU Jingzhao1
Received:
2020-06-29
Revised:
2020-12-09
Published:
2021-09-25
Online:
2021-11-25
Supported by:
摘要:
微塑料作为一种环境中普遍存在的新型污染物正在引起越来越多的关注。本文基于2019年5—7月在青藏高原地区采集的53个水样和52个土壤样品微塑料检出结果,分析了研究区水土环境中微塑料赋存情况,并讨论了其潜在来源。研究区域的微塑料样点分别位于两大区域:青藏高原南部地区和祁连山地区。青藏高原南部地区水体中微塑料浓度显著高于祁连山地区,而土壤中微塑料丰度在两个区域差别不显著(p>0.05)。水土样品中微塑料浓度范围分别为0~1916.66个/m3和0~260个/kg,平均值为(438.21±454.94)个/m3和(48.35±36.25)个/kg。水体中的微塑料以透明纤维为主,主要聚合物为聚丙烯;土壤微塑料中最多的是透明薄膜,主要聚合物为聚乙烯。来源分析表明洗衣废水和旅游业带来的生活垃圾可能是水体微塑料的主要来源,而土壤微塑料潜在主要来源是农业塑料覆膜的使用。研究结果揭示了青藏高原水土环境中微塑料的赋存形态和空间分布特征,可为高寒地区微塑料迁移转化机制研究提供数据支撑。
冯三三, 卢宏玮, 姚天次, 刘云龙, 唐孟, 冯玮, 卢静昭. 青藏高原典型区微塑料分布特征及来源分析[J]. 地理学报, 2021, 76(9): 2130-2141.
FENG Sansan, LU Hongwei, YAO Tianci, LIU Yunlong, TANG Meng, FENG Wei, LU Jingzhao. Distribution and source analysis of microplastics in typical areas of Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2021, 76(9): 2130-2141.
表1
采样点经纬度信息
水体 | 纬度(°N) | 经度(°E) | 土壤 | 纬度(°N') | 经度(°E) | |
---|---|---|---|---|---|---|
W1 | 29.9790 | 95.6800 | S1 | 29.5816 | 94.4493 | |
W2 | 29.9314 | 95.6188 | S2 | 29.9088 | 95.6124 | |
W3 | 29.8656 | 95.7580 | S3 | 30.9411 | 97.3638 | |
W4 | 29.5530 | 96.8330 | S4 | 29.9016 | 98.4488 | |
W5 | 31.1399 | 97.1754 | S5 | 29.6716 | 98.5950 | |
W6 | 29.7600 | 97.9788 | S6 | 28.8525 | 99.8280 | |
W7 | 30.0180 | 99.1219 | S7 | 27.6263 | 99.7413 | |
W8 | 27.8209 | 99.7097 | S8 | 26.8466 | 100.0669 | |
W9 | 27.7399 | 100.8171 | S9 | 27.1986 | 100.2738 | |
W10 | 27.8035 | 100.7547 | S10 | 27.7513 | 100.7861 | |
W11 | 29.0487 | 100.2955 | S11 | 28.2800 | 99.1772 | |
W12 | 29.4538 | 94.4647 | S12 | 28.2969 | 98.8675 | |
W13 | 29.0504 | 93.0682 | S13 | 28.4927 | 97.0116 | |
W14 | 29.1476 | 92.5725 | S14 | 28.4925 | 97.0077 | |
W15 | 26.8880 | 99.9611 | S15 | 28.6233 | 97.3430 | |
W16 | 27.7711 | 99.4275 | S16 | 29.7402 | 96.0019 | |
W17 | 28.3644 | 99.5488 | S17 | 29.9602 | 95.3766 | |
W18 | 28.4183 | 99.2544 | S18 | 29.5766 | 94.4697 | |
W19 | 28.3505 | 99.0677 | S19 | 29.0727 | 92.8952 | |
W20 | 28.9069 | 99.0538 | S20 | 29.0632 | 92.8265 | |
W21 | 31.6231 | 98.5944 | S21 | 29.2605 | 91.9597 | |
W22 | 31.9563 | 98.8764 | S22 | 26.8880 | 99.9611 | |
W23 | 32.4951 | 97.8555 | S23 | 27.9597 | 99.4127 | |
W24 | 33.0128 | 97.2381 | S24 | 27.9936 | 99.5488 | |
W25 | 32.9800 | 97.2405 | S25 | 29.0427 | 99.3772 | |
W26 | 33.2240 | 96.4812 | S26 | 31.8666 | 98.1097 | |
W27 | 32.9762 | 95.1020 | S27 | 32.4702 | 97.8994 | |
W28 | 32.9004 | 95.2597 | S28 | 32.4951 | 97.8555 | |
W29 | 36.8499 | 101.8731 | S29 | 33.0128 | 97.2381 | |
W30 | 36.5093 | 101.8476 | S30 | 32.9800 | 97.2405 | |
W31 | 36.9029 | 101.0161 | S31 | 32.9994 | 97.1530 | |
W32 | 36.5459 | 100.7194 | S32 | 33.2240 | 96.4812 | |
W33 | 36.5862 | 100.4869 | S33 | 33.7388 | 96.2361 | |
W34 | 37.3574 | 97.3215 | S34 | 33.6151 | 95.1472 | |
W35 | 37.3149 | 96.9262 | S35 | 32.9004 | 95.2597 | |
W36 | 37.3166 | 96.8826 | S36 | 38.1580 | 102.512 | |
W37 | 37.4626 | 95.6045 | S37 | 36.5092 | 101.8512 | |
W38 | 37.4505 | 95.5430 | S38 | 37.1940 | 102.6125 | |
W39 | 37.8555 | 95.4363 | S39 | 37.3553 | 97.3212 | |
W40 | 37.8200 | 95.2100 | S40 | 37.4626 | 95.6045 | |
W41 | 38.8000 | 94.3400 | S41 | 37.9100 | 95.1200 | |
W42 | 39.9521 | 94.3352 | S42 | 38.8200 | 94.3400 | |
W43 | 40.1420 | 94.6549 | S43 | 40.1159 | 94.6868 | |
W44 | 39.7464 | 98.2916 | S44 | 39.7294 | 98.3033 | |
W45 | 39.7480 | 98.2928 | S45 | 39.8019 | 98.3240 | |
W46 | 39.7653 | 98.3067 | S46 | 39.1162 | 100.1361 | |
W47 | 38.9559 | 100.4183 | S47 | 39.1569 | 99.3994 | |
W48 | 38.9575 | 100.3925 | S48 | 38.8878 | 100.4997 | |
W49 | 39.1503 | 99.2850 | S49 | 38.5736 | 100.7875 | |
W50 | 39.1628 | 99.2861 | S50 | 38.2825 | 100.9064 | |
W51 | 38.2003 | 100.9344 | S51 | 37.4492 | 101.3555 | |
W52 | 38.0717 | 100.3964 | S52 | 37.0264 | 101.5508 | |
W53 | 37.4566 | 101.4044 |
[1] |
Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic? Science, 2004, 304: 838-838.
pmid: 15131299 |
[2] |
Morgana S, Ghigliotti L, Estévez-Calvar N, et al. Microplastics in the Arctic: A case study with sub-surface water and fish samples off Northeast Greenland. Environmental Pollution, 2018, 242: 1078-1086.
doi: S0269-7491(18)30985-0 pmid: 30096546 |
[3] |
Aymerich I, Acuña V, Ort C, et al. Fate of organic microcontaminants in wastewater treatment and river systems: An uncertainty assessment in view of sampling strategy, and compound consumption rate and degradability. Water Research, 2017, 125: 152-161.
doi: S0043-1354(17)30664-4 pmid: 28846910 |
[4] |
Wesch C, Bredimus K, Paulus M, et al. Towards the suitable monitoring of ingestion of microplastics by marine biota: A review. Environmental Pollution, 2016, 218: 1200-1208.
doi: 10.1016/j.envpol.2016.08.076 |
[5] |
Campanale C, Massarelli C, Savino I, et al. A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 2020, 17: 1212. DOI: 10.3390/ijerph17041212.
doi: 10.3390/ijerph17041212 |
[6] |
Tanaka K, Takada H, Yamashita R, et al. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin, 2013, 69: 219-222.
doi: 10.1016/j.marpolbul.2012.12.010 |
[7] |
Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 2011, 62: 2588-2597.
doi: 10.1016/j.marpolbul.2011.09.025 |
[8] |
Law K L, Moret-Ferguson S, Maximenko N A, et al. Plastic accumulation in the North Atlantic subtropical gyre. Science, 2010, 329: 1185-1188.
doi: 10.1126/science.1192321 |
[9] |
Collignon A, Hecq J H, Glagani F, et al. Neustonic microplastic and zooplankton in the north western Mediterranean Sea. Marine Pollution Bulletin, 2012, 64: 861-864.
doi: 10.1016/j.marpolbul.2012.01.011 pmid: 22325448 |
[10] |
Cohen J H, Internicola A M, Mason R A, et al. Observations and simulations of microplastic debris in a tide, wind, and freshwater-driven estuarine environment: The Delaware bay. Environmental Science & Technology, 2019, 53: 14204-14211.
doi: 10.1021/acs.est.9b04814 |
[11] |
Wang S M, Chen H Z, Zhou X W, et al. Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environmental Pollution, 2020, 264: 114125. DOI: 10.1016/j.envpol.2020.114125.
doi: 10.1016/j.envpol.2020.114125 |
[12] |
Suaria G, Perold V, Lee J R, et al. Floating macro- and microplastics around the southern ocean: Results from the Antarctic circumnavigation expedition. Environment International, 2020, 136: 105494. DOI: 10.1016/j.envint. 2020.105494.
doi: 10.1016/j.envint. 2020.105494 |
[13] |
Zhao S Y, Zhu L X, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Marine Pollution Bulletin, 2014, 86: 562-568.
doi: 10.1016/j.marpolbul.2014.06.032 |
[14] | Zhou Qian. Occurrences and ecological risks of microplastics in the typical coastal beaches and seas[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2016. |
[周倩. 典型滨海潮滩及近海环境中微塑料污染特征与生态风险[D]. 烟台: 中国科学院烟台海岸带研究所, 2016.] | |
[15] |
Koongolla J B, Lin L, Pan Y F, et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environmental Pollution, 2020, 258: 113734. DOI: 10.1016/j.envpol.2019.113734.
doi: S0269-7491(19)33034-9 pmid: 31884260 |
[16] |
Zhao S Y, Wang T, Zhu L X, et al. Analysis of suspended microplastics in the Changjiang Estuary: Implications for riverine plastic load to the ocean. Water Research, 2019, 161: 560-569.
doi: 10.1016/j.watres.2019.06.019 |
[17] |
Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment, 2018, 616/617: 1620-1627.
doi: 10.1016/j.scitotenv.2017.10.150 |
[18] |
Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety, 2019, 170: 180-187.
doi: 10.1016/j.ecoenv.2018.11.126 |
[19] |
Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 2018, 242: 855-862.
doi: 10.1016/j.envpol.2018.07.051 |
[20] |
Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 2018, 642: 12-20.
doi: 10.1016/j.scitotenv.2018.06.004 |
[21] |
Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau. Environmental Pollution, 2019, 249: 91-98.
doi: 10.1016/j.envpol.2019.03.022 |
[22] |
Wong G, Löwemark L, Kunz A, et al. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: Spatial heterogeneity and correlation with precipitation. Environmental Pollution, 2020, 260: 113935. DOI: 10.1016/j.envpol.2020.113935.
doi: 10.1016/j.envpol.2020.113935 |
[23] |
Mao R F, Hu Y Y, Zhang S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, northern China. Science of the Total Environment, 2020, 723: 137820. DOI: 10.1016/j.scitotenv.2020.137820.
doi: 10.1016/j.scitotenv.2020.137820 |
[24] |
Eo S, Hong S H, Song Y K, et al. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Research, 2019, 160: 228-237.
doi: 10.1016/j.watres.2019.05.053 |
[25] |
Free C M, Jensen O P, Mason S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 2014, 85: 156-163.
doi: 10.1016/j.marpolbul.2014.06.001 |
[26] |
Eriksen M, Mason S, Wilson S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 2013, 77: 177-182.
pmid: 24449922 |
[27] |
Long Z X, Pan Z, Wang W L, et al. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 2019, 155: 255-265.
doi: 10.1016/j.watres.2019.02.028 |
[28] |
Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources. Science of the Total Environment, 2018, 612: 422-435.
doi: 10.1016/j.scitotenv.2017.08.086 |
[29] |
Kyrikou I, Briassoulis D, Hiskakis M, et al. Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants. Polymer Degradation and Stability, 2011, 96: 2237-2252.
doi: 10.1016/j.polymdegradstab.2011.09.001 |
[30] |
Ramos L, Berenstein G, Hughes E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of the Total Environment, 2015, 523: 74-81.
doi: 10.1016/j.scitotenv.2015.03.142 |
[31] |
Huang Y, Liu Q, Jia W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 2020, 260: 114096. DOI: 10.1016/j.envpol.2020.114096.
doi: S0269-7491(19)36247-5 pmid: 32041035 |
[32] |
Zettler E R, Mincer T J, Amaral-Zettler L A. Life in the "plastisphere": Microbial communities on plastic marine debris. Environmental Science & Technology, 2013, 47: 7137-7146.
doi: 10.1021/es401288x |
[33] |
Hüffer T, Weniger A K, Hofmann T. Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution, 2018, 236: 218-225.
doi: 10.1016/j.envpol.2018.01.022 |
[34] |
Mani T, Primpke S, Lorenz C, et al. Microplastic pollution in benthic midstream sediments of the Rhine river. Environmental Science & Technology, 2019, 53: 6053-6062.
doi: 10.1021/acs.est.9b01363 |
[35] |
Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 2016, 104: 290-293.
doi: 10.1016/j.marpolbul.2016.01.006 |
[36] |
Liu K, Wang X H, Fang T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of the Total Environment, 2019, 675: 462-471.
doi: 10.1016/j.scitotenv.2019.04.110 |
[37] |
Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science & Technology, 2011, 45: 9175-9179.
doi: 10.1021/es201811s |
[38] |
Wang F, Wong C S, Chen D, et al. Interaction of toxic chemicals with microplastics: A critical review. Water Research, 2018, 139: 208-219.
doi: S0043-1354(18)30283-5 pmid: 29653356 |
[39] |
Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 2013, 33: 443. DOI: 10.1007/s13593-011-0068-3.
doi: 10.1007/s13593-011-0068-3 |
[1] | 樊杰, 赵鹏军, 周尚意, 邓祥征, 王琛. 人文地理学学科体系与发展战略要点[J]. 地理学报, 2021, 76(9): 2083-2093. |
[2] | 李文君, 李鹏, 封志明, 游珍, 肖池伟. 基于人居环境特征的青藏高原“无人区”空间界定[J]. 地理学报, 2021, 76(9): 2118-2129. |
[3] | 刘振, 刘盛和, 戚伟, 金浩然. 青藏高原流动人口居留意愿及影响因素[J]. 地理学报, 2021, 76(9): 2142-2156. |
[4] | 丁锐, 史文娇. 1993—2017年气候变化对西藏谷物单产的定量影响[J]. 地理学报, 2021, 76(9): 2174-2186. |
[5] | 张俊华, 朱连奇, 李国栋, 赵芳, 秦静婷. 中国南北过渡带土壤碳氮空间特征及暖温带与亚热带界限[J]. 地理学报, 2021, 76(9): 2269-2282. |
[6] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[7] | 张涵, 黎夏, 石洪, 刘晓娟. 基于倾向得分匹配方法的中国自然保护区缓解人类活动压力评估[J]. 地理学报, 2021, 76(3): 680-693. |
[8] | 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3): 713-725. |
[9] | 孙美平, 马维谦, 姚晓军, 张明军, 李忠勤, 秦大河. 祁连山冰川服务价值评估及其时空特征[J]. 地理学报, 2021, 76(1): 178-190. |
[10] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[11] | 董广辉, 仇梦晗, 李若, 陈发虎. 探讨过去人地关系演变机制的“支点”概念模型[J]. 地理学报, 2021, 76(1): 15-29. |
[12] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[13] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[14] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[15] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |