地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1257-1273.doi: 10.11821/dlxb202105016
刘爽1,2(), 白洁1, 罗格平1,2(
), 吕娜娜3, 吴淼4
收稿日期:
2019-06-05
修回日期:
2020-11-16
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
罗格平(1968-), 男, 湖南湘乡人, 博士, 研究员, 主要从事土地变化及其生态效应、遥感与GIS应用研究。E-mail: luogp@ms.xjb.ac.cn作者简介:
刘爽(1994-), 女, 江苏沭阳人, 硕士生, 主要从事社会经济用水分析、遥感与GIS应用研究。E-mail: liushuang174@mails.ucas.ac.cn
基金资助:
LIU Shuang1,2(), BAI Jie1, LUO Geping1,2(
), LYU Nana3, WU Miao4
Received:
2019-06-05
Revised:
2020-11-16
Published:
2021-05-25
Online:
2021-07-25
Supported by:
摘要:
1960年以来咸海流域大规模的水土资源开发使得社会经济用水激增,致使至1990年咸海面积萎缩50%,引发咸海生态危机。目前对引起咸海生态危机的社会经济用水的时空变化特征和趋势尚不清楚。本文在整合了多途径获取的1960—2016年咸海流域国家/州级水资源和社会经济数据的基础上,利用系统动力学模型,仿真模拟和分析了1960—2016年咸海流域社会经济和用水时空变化特征,并多情景预测2016—2030年咸海流域社会经济用水。1960—2016年咸海流域人口增幅267%,GDP增幅1100%,社会经济用水量从410亿m3增长至910亿m3。咸海流域的工农业用水效益在1991年苏联解体后明显增加,但仍处于较低水平。对未来的情景预测表明:若延续现有社会经济用水效率、农作物种植面积持续扩张(S1),至2030年咸海流域社会经济用水量达到962亿m3;而在滴灌普及率达到70%、种植面积不变的情景下(S10),社会经济用水量降至681亿m3,可有效缓解咸海危机。
刘爽, 白洁, 罗格平, 吕娜娜, 吴淼. 咸海流域社会经济用水分析与预测[J]. 地理学报, 2021, 76(5): 1257-1273.
LIU Shuang, BAI Jie, LUO Geping, LYU Nana, WU Miao. Analysis and prediction of socio-economic water use in the Aral Sea Basin[J]. Acta Geographica Sinica, 2021, 76(5): 1257-1273.
表1
中亚5国在咸海流域的空间分布和面积构成
子流域 | 国家 | 面积(104 km2) | 流域占比(%) | 州名 |
---|---|---|---|---|
锡尔河 | 吉尔吉斯斯坦 | 12.5 | 22.7 | 巴特肯州、奥什州、贾拉拉巴德州、纳伦州 |
乌兹别克斯坦 | 6.1 | 11.1 | 安集延州、纳曼干州、费尔干纳州、塔什干州、锡尔河州、吉扎克州 | |
塔吉克斯坦 | 2.5 | 4.5 | 粟特州 | |
哈萨克斯坦 | 34.0 | 61.7 | 南哈萨克斯坦州、克孜勒奥尔达州 | |
阿姆河 | 塔吉克斯坦 | 11.7 | 13.5 | 国家直辖区、哈特隆州、山地—巴达赫尚自治州 |
乌兹别克斯坦 | 39.8 | 46.0 | 卡拉克帕克共和国、花剌子模州、纳沃伊州、布哈拉州、撒马尔罕州、卡什卡河州、苏尔汉河州 | |
土库曼斯坦 | 35.1 | 40.5 | 达绍古兹州、阿哈尔州、马雷州、列巴普州 |
表2
咸海流域社会经济用水SD建模所用数据
数据类型 | 数据项 | 数据名称 | 空间尺度 | 年份 | 数据来源/方法 |
---|---|---|---|---|---|
地图 | 苏联解体前地图 | 国家/ 州界 | 1990 | 苏联社会主义共和国地图集a | |
中亚5国行政区划数据 | 2010 | 世界分国地图 | |||
社会经济数据 | 产值 | GDP | 国家 | 1960—1964 | 依据1965—2013年数据线性趋势外推 |
1965—2013 | Agricultural Statistical Database of Transition Countries | ||||
2014—2016 | 世界银行 | ||||
农业产值 | 国家 | 1960—1964 | 依据1965—2013年数据线性趋势外推 | ||
1965—2013 | Agricultural Statistical Database of Transition Countries | ||||
2014—2016 | 世界银行 | ||||
工业产值 | 国家 | 1960—2016 | GDP与农业产值之差 | ||
人口 | 城市人口、农村人口 | 分州 | 1960—1979 | 苏联社会主义共和国统计年鉴 | |
1980—1990 | 独联体统计委员会 | ||||
1991—2016 | 中亚5国统计年鉴b、统计局网站c | ||||
种植结构 | 谷物、棉花、饲料、其他作物 面积 | 分州 | 1960—1987 | 苏联社会主义共和国统计年鉴d | |
1988—1990 | 独联体统计委员会e | ||||
1991—2016 | 中亚5国统计年鉴b、统计局网站c | ||||
果园面积 | 国家 | 1960—1987 | 苏联社会主义共和国统计年鉴d | ||
1988—1990 | 独联体统计委员会e | ||||
1991—2016 | 中亚5国统计年鉴b、统计局网站c | ||||
牲畜量 | 牛、羊头数 | 分州 | 1960—1987 | 苏联社会主义共和国统计年鉴d | |
1988—1990 | 依据1987、1991年数据线性插值 | ||||
1991—2016 | 中亚5国统计年鉴b、统计局网站c | ||||
水资源 数据 | 用水量 | 工业、农业、生活用水量 | 国家 | 1980—2016 | ICWC |
灌溉定额 | 文献[ | ||||
灌溉面积 | 国家 | 1962、1966—1980 | 文献[ | ||
1992—2008 | ICWC | ||||
水利工程 | 水库面积、库容 | ICWC | |||
径流量 | 阿姆河、锡尔河径流量 | 1960—2016 | ICWC | ||
入湖水量 | 阿姆河、锡尔河入湖水量 | 1960—2016 | 水文站f |
表3
SD模型主要参数及方程
变量 | 单位 | 方程 |
---|---|---|
人口 | 千人 | 人口=INTEG(人口增长量, 人口初始值) |
人口增长量 | 千人 | 人口增长量=人口×人口增长率/1000 |
生活用水量 | 106 m3 | 生活用水量=(农村人口×农村居民用水定额+城市人口×城市居民用水定额)/1000 |
工业产值 | 106 美元 | 工业产值=INTEG(工业产值增长量, 工业产值初始值) |
工业用水量 | 106 m3 | 工业用水量=工业产值×单位工业产值耗水量/1000 |
牲畜头数 | 千头 | 牲畜头数=INTEG(牲畜增长量, 牲畜初始值) |
畜牧业用水量 | 106 m3 | 畜牧业用水量=(牛数量×牛用水定额+羊数量×羊用水定额)/1000 |
灌溉面积 | 103 hm2 | 灌溉面积=INTEG(灌溉面积增长量, 灌溉面积初始值) |
种植业用水量 | 106 m3 | 种植业用水量=[(谷物面积+果林面积+其他农作物面积)×灌溉面积比例×灌溉定额+棉花面积×灌溉定额×1.2]/1000 |
灌溉量 | m3 | 灌溉量=(每公顷灌溉量+供水变化量)×灌溉系数 |
水库用水量 | 106 m3 | 水库用水量=水库面积×蒸发量+水库蓄容量+水库泄洪量 |
可用水量 | 106 m3 | 可用水量=径流量-入湖水量 |
缺水系数 | % | 缺水系数=总用水量/供水量×100% |
表5
咸海流域灌溉面积比例
国家 | 种植面积(103 hm2) | 灌溉面积(103 hm2) | 灌溉面积比例 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1960 | 2000 | 2010 | 1962 | 2000 | 2010 | 1960 | 2000 | 2010 | |||
哈萨克斯坦 | 28561 | 16195 | 21438 | 1145 | 3556 | 3556 | 0.04 | 0.22 | 0.17 | ||
哈国咸海流域部分 | 951 | 701 | 858 | 0.80 | 0.90 | 1.00 | |||||
吉尔吉斯斯坦 | 1196 | 1212 | 1146 | 875 | 978 | 978 | 0.73 | 0.81 | 0.85 | ||
塔吉克斯坦 | 724 | 864 | 839 | 418 | 719 | 722 | 0.58 | 0.83 | 0.86 | ||
土库曼斯坦 | 446 | 1484 | 1561 | 450 | 1800 | 1800 | 1.00 | 1.00 | 1.00 | ||
乌兹别克斯坦 | 3149 | 3778 | 3708 | 2568 | 4223 | 4223 | 0.82 | 1.00 | 1.00 |
表6
咸海流域各国社会经济用水系统预测情景及参数
情景参数 | 哈萨克斯坦 | 吉尔吉斯斯坦 | 塔吉克斯坦 | 土库曼斯坦 | 乌兹别克斯坦 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2030 | 2016 | 2030 | 2016 | 2030 | 2016 | 2030 | 2016 | 2030 | ||||||
人口增长率(‰) | 13 | 7 | 15 | 9 | 22 | 15 | 17 | 10 | 15 | 8 | |||||
GDP增长率(%) | 1.1 | 4.4 | 3.8 | 3.5 | 6.9 | 5.0 | 6.2 | 6.2 | 7.8 | 5.5 | |||||
农作物种植面积增长率(%) | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 1 | 1 | 1 | 1 | |||||
滴灌普及率(%) | S1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
S2 | 0 | 20 | 0 | 10 | 0 | 10 | 0 | 20 | 0 | 20 | |||||
S3 | 0 | 30 | 0 | 20 | 0 | 20 | 0 | 30 | 0 | 30 | |||||
S4 | 0 | 50 | 0 | 40 | 0 | 40 | 0 | 50 | 0 | 50 | |||||
S5 | 0 | 70 | 0 | 60 | 0 | 60 | 0 | 70 | 0 | 70 | |||||
S6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
S7 | 0 | 20 | 0 | 10 | 0 | 10 | 0 | 20 | 0 | 20 | |||||
S8 | 0 | 30 | 0 | 20 | 0 | 20 | 0 | 30 | 0 | 30 | |||||
S9 | 0 | 50 | 0 | 40 | 0 | 40 | 0 | 50 | 0 | 50 | |||||
S10 | 0 | 70 | 0 | 60 | 0 | 60 | 0 | 70 | 0 | 70 |
[1] | Cheng Guodong, Zhao Chuanyan. An integrated study of ecological and hydrological processes in the inland river basin of the arid region, China. Advances in Earth Science, 2008,23(10):1005-1012. |
[ 程国栋, 赵传燕. 干旱区内陆河流域生态水文综合集成研究. 地球科学进展, 2008,23(10):1005-1012.] | |
[2] | Sorg A, Mosello B, Shalpykova G, et al. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. Environmental Science & Policy, 2014,43(SI):68-77. |
[3] |
Yu Y, Pi Y Y, Yu X, et al. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. Journal of Arid Land, 2019,11(1):1-14.
doi: 10.1007/s40333-018-0073-3 |
[4] | Ablekim Abdimijit, Ge Yongxiao, Wang Yajun, et al. The past, present and feature of the Aral Sea. Arid Zone Research, 2019,36(1):7-18. |
[ 阿布都米吉提·阿布力克木, 葛拥晓, 王亚俊, 等. 咸海的过去、现在与未来. 干旱区研究, 2019,36(1):7-18.] | |
[5] | Tian Xiangrong, Wang Guoyi, Fan Yanfang. Aral Sea basin transboundary water cooperation: History, present situation and reflections. Journal of Boundary and Ocean Studies, 2017,2(6):90-104. |
[ 田向荣, 王国义, 樊彦芳. 咸海流域跨界水合作历史、形势及思考. 边界与海洋研究, 2017,2(6):90-104.] | |
[6] |
Chen Y N, Li Z, Fang G H, et al. Large hydrological processes changes in the transboundary rivers of Central Asia. Journal of Geophysical Research: Atmospheres, 2018,123(10):5059-5069.
doi: 10.1029/2017JD028184 |
[7] |
Abdullaev I, Rakhmatullaev S. Transformation of water management in Central Asia: From state-centric, hydraulic mission to socio-political control. Environmental Earth Sciences, 2015,73(2):849-861.
doi: 10.1007/s12665-013-2879-9 |
[8] |
Veldwisch G J A, Mollinga P P. Lost in transition? The introduction of water users associations in Uzbekistan. Water International, 2013,38(6):758-773.
doi: 10.1080/02508060.2013.833432 |
[9] |
Zinzani A. Irrigation management transfer and WUAs' dynamics: Evidence from the South-Kazakhstan province. Environmental Earth Sciences, 2015,73(2):765-777.
doi: 10.1007/s12665-014-3209-6 |
[10] |
Kulmatov R, Rasulov A, Kulmatova D, et al. The modern problems of sustainable use and management of irrigated lands on the example of the Bukhara region (Uzbekistan). Journal of Water Resource and Protection, 2015,7(12):956-971.
doi: 10.4236/jwarp.2015.712078 |
[11] |
Kulmatov R, Groll M, Rasulov A, et al. Status quo and present challenges of the sustainable use and management of water and land resources in Central Asian irrigation zones: The example of the Navoi region (Uzbekistan). Quaternary International, 2018,464:396-410.
doi: 10.1016/j.quaint.2017.11.043 |
[12] |
Lee S O, Jung Y. Efficiency of water use and its implications for a water-food nexus in the Aral Sea basin. Agricultural Water Management, 2018,207:80-90.
doi: 10.1016/j.agwat.2018.05.014 |
[13] |
Thevs N, Ovezmuradov K, Zanjani L V, et al. Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap province, Turkmenistan. Environmental Earth Sciences, 2015,73(2):731-741.
doi: 10.1007/s12665-014-3084-1 |
[14] |
Teasley R L, McKinney D C . Calculating the benefits of transboundary river basin cooperation: Syr Darya basin. Journal of Water Resources Planning and Management, 2011,137(6):481-490.
doi: 10.1061/(ASCE)WR.1943-5452.0000141 |
[15] | Elhance A P. Conflict and cooperation over water in the Aral Sea Basin. Studies in Conflict & Terrorism, 1997,20(2):207-218. |
[16] | Murthy S L, Mendikulova F. Water, conflict, and cooperation in Central Asia: The role of international law and diplomacy. Vermont Journal of Environmental Law, 2017,18(3):400-454. |
[17] |
Granit J, Jgerskog A, Lindstrm A, et al. Regional options for addressing the water, energy and food nexus in Central Asia and the Aral Sea Basin. International Journal of Water Resources Development, 2012,28(3):419-432.
doi: 10.1080/07900627.2012.684307 |
[18] |
Groll M, Opp C, Kulmatov R, et al. Water quality, potential conflicts and solutions: An upstream-downstream analysis of the transnational Zarafshan River (Tajikistan, Uzbekistan). Environmental Earth Sciences, 2015,73(2):743-763.
doi: 10.1007/s12665-013-2988-5 |
[19] | Karthe D, Abdullaev I, Boldgiv B, et al. Water in Central Asia: An integrated assessment for science-based management. Environmental Earth Sciences, 2017,76(20). DOI: 10.1007/s12665-017-6994-x. |
[20] | Micklin P. The past, present, and future Aral Sea. Lakes & Reservoirs: Research & Management, 2010,15(3):193-213. |
[21] |
Aus der Beek T A, Voß F, Flörke M. Modelling the impact of global change on the hydrological system of the Aral Sea basin. Physics and Chemistry of the Earth, Parts A/B/C, 2011,36(13):684-695.
doi: 10.1016/j.pce.2011.03.004 |
[22] | Conrad C, Schorcht G, Tischbein B, et al. Agro-Meteorological trends of recent climate development in Khorezm and implications for crop production//Martius C, Rudenko I, Lamers J P A, et al. Cotton, Water, Salts and Soums.Dordrecht: Springer, 2012: 25-36. |
[23] | Olsson O, Bauer M, Ikramova M, et al. The role of the Amu Darya dams and reservoirs in future water supply in the Amu Darya basin//Qi J, Evered K T. Environmental Problems of Central Asia and Their Economic, Social and Security Impacts. Dordrecht: Springer, 2008: 277-292. |
[24] | Rakhmatullaev S, Huneau F, Kazbekov J, et al. Groundwater resources of Uzbekistan: An environmental and operational overview. Open Geosciences, 2012,4(1):67-80. |
[25] |
Abdullaev I. Effects of large scale irrigation on drinking water quality in the Bukhara and Kashkadarya provinces of Uzbekistan. Water International, 2002,27(2):266-270.
doi: 10.1080/02508060208687000 |
[26] | Yu Changqia. Handbook of the Five Central Asian Countries. Urumqi:Xinjiang Science, Technology and Health Press, 1992. |
[ 于长千. 中亚五国手册. 乌鲁木齐:新疆科技卫生出版社, 1992.] | |
[27] |
Lerman Z, Sedik D. Transition to smallholder agriculture in Central Asia. Journal of Agrarian Change, 2018,18(4):904-912.
doi: 10.1111/joac.v18.4 |
[28] | Duyunov I. Measures to increase the efficiency of irrigated lands in Kyrgyzstan//Bos M G. The Inter-Relationship between Irrigation, Drainage and the Environment in the Aral Sea Basin. Netherlands: Springer, 1996: 125-128. |
[29] | Shirokova Y I, Morozov A N. About ways for improvement of water use in irrigation of Uzbekistan//Pahl-Wostl C, Kabat P, Möltgen J. Adaptive and Integrated Water Management: Coping with Complexity and Uncertainty. Netherlands: Springer, 1996: 357-379. |
[30] |
Scott J, Rosen M R, Saito L, et al. The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan. Journal of Hydrology, 2011,410(1/2):114-125.
doi: 10.1016/j.jhydrol.2011.09.028 |
[31] |
Ospanbayev Z O, Kurmanbayeva M S, Abdukadirova Z A, et al. Water use efficiency of rice and soybean under drip irrigation with mulch in the south-east of Kazakhstan. Applied Ecology and Environmental Research, 2017,15(4):1581-1603.
doi: 10.15666/aeer |
[32] | Information Office of Central Asia Research Institute,Xinjiang Academy of Social Sciences. A Compilation of Economic Statistics of Five Central Asian Republics of the Soviet Union. Urumqi: 1983. |
[ 新疆社会科学院中亚研究所资料情报室. 苏联中亚5个加盟共和国经济统计资料汇编. 乌鲁木齐: 新疆社会科学院, 1983.] | |
[33] |
Cai X M, McKinney D C, Rosegrant M W . Sustainability analysis for irrigation water management in the Aral Sea region. Agricultural Systems, 2003,76(3):1043-1066.
doi: 10.1016/S0308-521X(02)00028-8 |
[34] |
Cretaux J F, Letolle R, Berge-Nguyen M. History of Aral Sea level variability and current scientific debates. Global and Planetary Change, 2013,110:99-113.
doi: 10.1016/j.gloplacha.2013.05.006 |
[35] | Li Wei. Study on theory and method of water use drivers by economic and societal changes: A structural decomposition analysis[D]. Beijing: China Institute of Water Resources & Hydropower Research, 2018. |
[ 李玮. 社会经济驱动用水的理论与方法研究[D]. 北京: 中国水利水电科学研究院, 2018.] | |
[36] | Xiong Ying, Li Jingzhi, Jiang Dingling. Optimized decision-making of water resources supply and demand system in Changsha-Zhuzhou-Xiangtan urban agglomeration based on the analog simulation. Acta Geographica Sinica, 2013,68(9):1225-1239. |
[ 熊鹰, 李静芝, 蒋丁玲. 基于仿真模拟的长株潭城市群水资源供需系统决策优化. 地理学报, 2013,68(9):1225-1239.] | |
[37] |
Zomorodian M, Lai S H, Homayounfar M, et al. The state-of-the-art system dynamics application in integrated water resources modeling. Journal of Environmental Management, 2018,227:294-304.
doi: S0301-4797(18)30974-5 pmid: 30199725 |
[38] |
Gastelum J R, Krishnamurthy G, Ochoa N, et al. The use of system dynamics model to enhance integrated resources planning implementation. Water Resources Management, 2018,32(7):2247-2260.
doi: 10.1007/s11269-018-1926-4 |
[39] |
Yang Z Y, Song J X, Cheng D D, et al. Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi'an city, China. Journal of Environmental Management, 2019,230:221-233.
doi: 10.1016/j.jenvman.2018.09.085 |
[40] |
Gohari A, Mirchi A, Madani K. Erratum to: System dynamics evaluation of climate change adaptation strategies for water resources management in Central Iran. Water Resources Management, 2017,31(13):4367-4368.
doi: 10.1007/s11269-017-1690-x |
[41] | Ghasemi A, Saghafian B, Golian S. System dynamics approach for simulating water resources of an urban water system with emphasis on sustainability of groundwater. Environmental Earth Sciences, 2017,76(18). DOI: 10.1007/s12665-017-6887-z. |
[42] | Huang Dengying, Yang Hong. Should water-saving animal husbandry be developed? An example from Xinjiang. Water Saving Irrigation, 2018(3):77-78, 83. |
[ 黄登迎, 杨红. 应该发展节水型畜牧业吗? 来自新疆的例证. 节水灌溉, 2018(3):77-78, 83.] |
[1] | 李宗礼, 刘昌明, 郝秀平, 邱冰, 王中根. 河湖水系连通理论基础与优先领域[J]. 地理学报, 2021, 76(3): 513-524. |
[2] | 姚俊强, 毛炜峄, 陈静, 迪丽努尔·托列吾别克. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1): 57-72. |
[3] | 孙才志, 马奇飞, 赵良仕. 基于GWR模型的中国水资源绿色效率驱动机理[J]. 地理学报, 2020, 75(5): 1022-1035. |
[4] | 牛方曲, 孙东琪. 资源环境承载力与中国经济发展可持续性模拟[J]. 地理学报, 2019, 74(12): 2604-2613. |
[5] | 孙思奥, 郑翔益, 刘海猛. 京津冀城市群虚拟水贸易的近远程分析[J]. 地理学报, 2019, 74(12): 2631-2645. |
[6] | 贾仰文,郝春沣,牛存稳,仇亚琴,杜军凯,徐飞,刘欢. 典型山地降水径流时空演变及“水—热—人—地”匹配性分析[J]. 地理学报, 2019, 74(11): 2288-2302. |
[7] | 邓铭江. 中国西北“水三线”空间格局与水资源配置方略[J]. 地理学报, 2018, 73(7): 1189-1203. |
[8] | 邓海军,陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响[J]. 地理学报, 2018, 73(7): 1309-1323. |
[9] | 熊鹰,陈云,李静芝,阎晓静. 基于土地集约利用的长株潭城市群建设用地供需仿真模拟[J]. 地理学报, 2018, 73(3): 562-577. |
[10] | 张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017, 72(9): 1606-1620. |
[11] | 余世维, 冯彦, 王文玲. 《国际水道非航行使用法公约》被认可的区域差异性[J]. 地理学报, 2017, 72(2): 303-314. |
[12] | 陈亚宁, 李稚, 方功焕, 邓海军. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26. |
[13] | 杨胜天, 于心怡, 丁建丽, 张飞, 王飞, 马利刚. 中亚地区水问题研究综述[J]. 地理学报, 2017, 72(1): 79-93. |
[14] | 陈亚宁, 李稚, 范煜婷, 王怀军, 方功焕. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304. |
[15] | 鲍超. 中国城镇化与经济增长及用水变化的时空耦合关系[J]. 地理学报, 2014, 69(12): 1799-1809. |