地理学报 ›› 2021, Vol. 76 ›› Issue (3): 584-594.doi: 10.11821/dlxb202103007
张永强1(), 孔冬冬2, 张选泽1, 田静1, 李聪聪1,3
收稿日期:
2020-05-21
出版日期:
2021-03-25
发布日期:
2021-05-25
作者简介:
张永强(1976-), 男, 内蒙古包头人, 研究员, 从事区域和全球水循环、特别是陆面蒸散发机理和过程研究。E-mail: zhangyq@igsnrr.ac.cn
基金资助:
ZHANG Yongqiang1(), KONG Dongdong2, ZHANG Xuanze1, TIAN Jing1, LI Congcong1,3
Received:
2020-05-21
Published:
2021-03-25
Online:
2021-05-25
Supported by:
摘要:
蒸散发是陆面水循环的关键环节和过程,是研究水循环对人类活动和气候变化响应的关键要素。过去十几年,全球下垫面的植被变化剧烈,但如何影响全球陆面蒸散发仍未得到清晰的揭示。本文采用500 m分辨率MODIS数据驱动PML-V2模型,定量解析了2003—2017年植被变化对全球陆面蒸散发的影响。结果显示:在全球尺度上,植被变绿使得全球蒸散发呈现显著的增加趋势,使陆地水循环加快;区域尺度上,植被变化对蒸散发的影响则存在明显的地带性和非地带性特征,如在北美洲中北部、欧洲、中国东部、非洲南部和澳大利亚东北部等地区,蒸散发总量的增加主要是由植被蒸腾增加而引起的。分析不同植被功能类型区的贡献显示,下垫面变化对灌木和耕地影响尤为明显,并在2012年以后呈现增强趋势;这2个植被类型区的全球年总蒸散发累积增加量为0.41×103 km3 a-1,约为黄河流域多年平均径流量的8倍。该研究结果有助于进一步加强关于下垫面变化对陆地水循环的影响及其可能带来的局部气候变化的认识。
张永强, 孔冬冬, 张选泽, 田静, 李聪聪. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594.
ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017[J]. Acta Geographica Sinica, 2021, 76(3): 584-594.
[1] | Zhang Y Q, Leuning R, Hutley L B, et al. Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05 degrees spatial resolution. Water Resources Research, 2010,46(5). DOI: 10.1029/2009wr008716. |
[2] | Zhang Y Q, Chiew F H S, Zhang L, et al. Validation of modis-based annual actual evapotranspiration against water balance estimates in murray-darling basin. 2007, 2639-2644. http://hdl.handle.net/102.100.100/125980.. 2021-01-27. |
[3] | Li J, Chen Y D, Zhang L, et al. Future changes in floods and water availability across China: Linkage with changing climate and uncertainties. Journal of Hydrometeorology, 2016,17(4):1295-1314. |
[4] | Wuebbles D, Meehl G, Hayhoe K, et al. CMIP5 climate model analyses: Climate extremes in the United States. Bulletin of the American Meteorological Society, 2014,95(4):571-583. |
[5] | Wang L, Chen W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 2014,34(6):2059-2078. |
[6] | Li J, Chen Y D, Gan T Y, et al. Elevated increases in human-perceived temperature under climate warming. Nature Climate Change, 2018,8(1):43-47. |
[7] | Chen Y D, Li J, Zhang Q, et al. Projected changes in seasonal temperature extremes across China from 2017 to 2100 based on statistical downscaling. Global and Planetary Change, 2018,166:30-40. |
[8] | Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948,193(1032):120-145. |
[9] |
Monteith J L. Evaporation and environment. Symposia of the Society for Experimental Biology, 1965,19:205-234.
pmid: 5321565 |
[10] | Zhang Y Q, Kong D D, Gan R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sensing of Environment, 2019,222:165-182. |
[11] |
Zhang Y Q, Pena-Arancibia J L, McVicar T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 2016,6(1). DOI: 10.1038/srep19124.
doi: 10.1038/s41598-016-0002-7 pmid: 28442706 |
[12] | Leuning R, Zhang Y Q, Rajaud A, et al. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the penman-monteith equation. Water Resources Research, 2008,44(10). DOI: 10.1029/2007wr006562. |
[13] | Qi Tianyao, Zhang Qiang, Wang Yue, et al. Spatiotemporal patterns of pan evaporation in 1960-2005 in China: Changing properties and possible causes: Changing properties and possible causes. Scientia Geographica Sinica, 2015,35(12):1599-1606. |
[ 祁添垚, 张强, 王月, 等. 1960—2005年中国蒸发皿蒸发量变化趋势及其影响因素分析. 地理科学, 2015,35(12):1599-1606.] | |
[14] | Han Songjun, Wang Shaoli, Yang Dawen. Agricultural influences on evaporation paradox in China. Transactions of the CSAE, 2010,26(10):1-8. |
[ 韩松俊, 王少丽, 杨大文. 农业活动对中国区域“蒸发悖论”规律的影响. 农业工程学报, 2010,26(10):1-8.] | |
[15] | Xie Ping, Long Huaiyu, Zhang Yangzhu, et al. Evaporation paradox in Yunnan Province. Journal of Irrigation and Drainage, 2016,35(9):81-87. |
[ 谢平, 龙怀玉, 张杨珠, 等. “蒸发悖论”在云南省的探讨. 灌溉排水学报, 2016,35(9):81-87.] | |
[16] | Cong Zhentao, Ni Guangheng, Yang Dawen, et al. Evaporation paradox in China. Advances in Water Science, 2008,19(2):147-152. |
[ 丛振涛, 倪广恒, 杨大文, 等. “蒸发悖论”在中国的规律分析. 水科学进展, 2008,19(2):147-152.] | |
[17] | Lian X, Piao S L, Huntingford C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018,8(7):640-646. |
[18] |
Sutanto S, Wenninger J, Coenders-Gerrits A, et al. Partitioning of evaporation into transpiration, soil evaporation and interception: A comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 2012,16(8):2605-2616.
doi: 10.5194/hess-16-2605-2012 |
[19] | Wang L X, Good S P, Caylor K K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 2014,41(19):6753-6757. |
[20] | Wang K, Dickinson R. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 2012,50(2). DOI: 10.1029/2011RG000373. |
[21] | Running S, Mu Q, Zhao M. MOD16A2 modis/terra net evapotranspiration 8-day L4 global 500 m sin grid v006. NASA EOSDIS Land Processes DAAC, 2017. DOI: 10.5067/MODIS/MOD16A2.006. |
[22] | Martens B, Gonzalez M D, Lievens H, et al. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 2017,10(5):1903-1925. |
[23] | Jung M, Reichstein M, Bondeau A J B . Towards global empirical upscaling of fluxnet eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 2009,6(10):2001-2013. |
[24] |
Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010,467(7318):951-954.
doi: 10.1038/nature09396 pmid: 20935626 |
[25] | Dong B, Dai A G. The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dynamics, 2017,49(1):279-296. |
[26] | Mueller B, Seneviratne S I, Jimenez C, et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 2011,38(6). DOI: 10.1029/2010GL046230. |
[27] | Schlosser C A, Gao X. Assessing evapotranspiration estimates from the second Global Soil Wetness Project (GSWP-2) simulations. Journal of Hydrometeorology, 2010,11(4):880-897. |
[28] | Gan R, Zhang Y Q, Shi H, et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for australian ecosystems. Ecohydrology, 2018,11(5):e1974. DOI: 10.1002/eco.1974. |
[29] |
Song X P, Hansen M C, Stehman S V, et al. Global land change from 1982 to 2016. Nature, 2018,560(7720):639-643.
doi: 10.1038/s41586-018-0411-9 pmid: 30089903 |
[30] | Sterling S M, Ducharne A, Polcher J. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 2012,3(4):385-390. |
[31] | Li G, Zhang F M, Jing Y S, et al. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013. Science of the Total Environment, 2017,596:256-265. |
[32] | Li C C, Zhang Y Q, Shen Y J, et al. LUCC-driven changes in gross primary production and actual evapotranspiration in northern China. Journal of Geophysical Research: Atmospheres, 2020, 125(6): e2019JD031705. DOI: 10.1029/2019JD031705. |
[33] | Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 2004,95(2):164-176. |
[34] | Ershadi A, McCabe M F, Evans J P , et al. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sensing of Environment, 2013,131:51-62. |
[35] | Sulla-Menashe D, Gray J M, Abercrombie S P, et al. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 land cover product. Remote Sensing of Environment, 2019,222:183-194. |
[36] | C EPH. A perfect smoother. Analytical chemistry, 2003,75(14):3631-3636. |
[37] | Kong D D, Zhang Y Q, Gu X H, et al. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,155:13-24. |
[38] | Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment, 1995,18(4):339-355. |
[39] |
Yu Q, Zhang Y Q, Liu Y F, et al. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 2004,93(4):435-441.
pmid: 14980969 |
[40] | Jia Shaofeng, Liang Yuan. Suggestions for strategic allocation of the Yellow River water resources under the new situation. Resources Science, 2020,42(1):29-36. |
[ 贾绍凤, 梁媛. 新形势下黄河流域水资源配置战略调整研究. 资源科学, 2020,42(1):29-36.] |
[1] | 陆林, 张清源, 黄剑锋, 任以胜. 基于全球地方化视角的旅游地演化理论探讨与展望[J]. 地理学报, 2021, 76(6): 1504-1520. |
[2] | 黄季夏, 张天媛, 曹云锋, 葛全胜, 杨林生. 北极海冰消融情景下东北航道通航性能演变分析[J]. 地理学报, 2021, 76(5): 1051-1064. |
[3] | 刘清, 杨永春, 蒋小荣, 曹宛鹏, 刘笑杰. 基于全球价值链的全球化城市网络分析——以苹果手机供应商为例[J]. 地理学报, 2021, 76(4): 870-887. |
[4] | 金凤君, 姚作林, 陈卓. 环南海区域发展特征与一体化经济区建设前景[J]. 地理学报, 2021, 76(2): 428-443. |
[5] | 温庆志, 孙鹏, 张强, 姚蕊. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482. |
[6] | 刘慧, 顾伟男, 刘卫东, 王姣娥. 中欧班列对企业生产组织方式的影响——以TCL波兰工厂为例[J]. 地理学报, 2020, 75(6): 1159-1169. |
[7] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[8] | 左秀玲, 苏奋振, 张宇, 吴文周, 吴迪. 全球气候变化下南海诸岛保护优先区识别分析[J]. 地理学报, 2020, 75(3): 647-661. |
[9] | 马恩朴, 蔡建明, 林静, 郭华, 韩燕, 廖柳文. 2000—2014年全球粮食安全格局的时空演化及影响因素[J]. 地理学报, 2020, 75(2): 332-347. |
[10] | 陆林, 张清源, 许艳, 黄剑锋, 徐雨晨. 全球地方化视角下旅游地尺度重组——以浙江乌镇为例[J]. 地理学报, 2020, 75(2): 410-425. |
[11] | 于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清. 生态系统科学研究与生态系统管理[J]. 地理学报, 2020, 75(12): 2620-2635. |
[12] | 吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[13] | 孙毅中, 杨静, 宋书颖, 朱杰, 戴俊杰. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10): 2164-2179. |
[14] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[15] | 阮宏威,于静洁. 1992-2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7): 1292-1304. |