地理学报 ›› 2021, Vol. 76 ›› Issue (3): 550-565.doi: 10.11821/dlxb202103005
收稿日期:
2020-01-04
修回日期:
2020-10-14
出版日期:
2021-03-25
发布日期:
2021-05-25
作者简介:
王志远(1984-), 男, 内蒙古通辽人, 博士, 讲师, 主要从事全球环境变化与古气候模拟研究。E-mail: wzhy@zjnu.edu.cn
基金资助:
WANG Zhiyuan1(), WANG Jianglin2, JIA Jia1, LIU Jian3
Received:
2020-01-04
Revised:
2020-10-14
Published:
2021-03-25
Online:
2021-05-25
Supported by:
摘要:
基于通用地球系统模式(CESM)进行了4组长达1500 a的模拟试验(全强迫试验,控制试验,自然外强迫试验和人类活动外强迫试验)。在评估模式模拟亚洲夏季风降水可靠性的基础上,对模拟结果进行10~100 a的带通滤波以获取年代—百年际亚洲夏季风降水信号。主要结论为:① 过去1500 a亚洲夏季风降水强度存在显著的约15 a、25 a、40 a和70 a的年代—百年际周期信号;② 年代—百年际亚洲夏季风降水的主要时空变化模态表现为外强迫模态和气候系统内部变化模态;③ 过去1500 a亚洲夏季风降水的强迫模态表现为经向“三明治”结构,即中国北方季风区和热带季风区同向变化,而在东亚中纬度一带季风降水反向变化特征。这种降水的空间分布模态主要由自然外强迫(太阳辐射+火山活动)作用所导致。本文为历史时期亚洲季风降水变化的研究提供了材料支撑,为全球变暖背景下亚洲季风降水演变提供参考。
王志远, 王江林, 贾佳, 刘健. 过去1500 a亚洲夏季风降水的强迫特征[J]. 地理学报, 2021, 76(3): 550-565.
WANG Zhiyuan, WANG Jianglin, JIA Jia, LIU Jian. The forced response of Asian summer monsoon precipitation during the past 1500 years based on the CESM[J]. Acta Geographica Sinica, 2021, 76(3): 550-565.
[1] |
Biemans H, Speelman L H, Ludwig F, et al. Future water resources for food production in five South Asian river basins and potential for adaptation: A modeling study. Science of the Total Environment, 2013,468/469:S117-S131.
doi: 10.1016/j.scitotenv.2013.05.092 |
[2] |
Ahmed F, Al-Amin A Q, Mohamad Z F , et al. Agriculture and food security challenge of climate change: A dynamic analysis for policy selection. Scientia Agricola, 2016,73(4):311-321.
doi: 10.1590/0103-9016-2015-0141 |
[3] |
Wang P X, Wang B, Cheng H, et al. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Science Reviews, 2017,174:84-121.
doi: 10.1016/j.earscirev.2017.07.006 |
[4] | Wang B. The Asian Monsoon. Berlin: Springer Berlin Heidelberg, 2006: 32. |
[5] |
Ding Y H, Johnny C. The East Asian summer monsoon: An overview. Meteorology and Atmospheric Physics, 2005,89(1-4):117-142.
doi: 10.1007/s00703-005-0125-z |
[6] |
Ding Y H, Wang Z Y, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 2008,28(9):1139-1161.
doi: 10.1002/joc.v28:9 |
[7] |
Ding Y, Sun Y, Wang Z Y, et al. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. International Journal of Climatology, 2009,29(13):1926-1944.
doi: 10.1002/joc.1759 |
[8] |
Kripalani R H, Kumar P. Northeast monsoon rainfall variability over south peninsular India vis-à-vis the Indian Ocean dipole mode. International Journal of Climatology, 2004,24(10):1267-1282.
doi: 10.1002/(ISSN)1097-0088 |
[9] |
Chen T C, Yoon J H. Interannual variation in Indochina summer monsoon rainfall: Possible mechanism. Journal of Climate, 2000,13(11):1979-1986.
doi: 10.1175/1520-0442(2000)013<1979:IVIISM>2.0.CO;2 |
[10] |
Qian Y F, Wang S Y, Shao H. A possible mechanism effecting the earlier onset of southwesterly monsoon in the South China Sea compared to the Indian monsoon. Meteorology and Atmospheric Physics, 2001,76(3/4):237-249.
doi: 10.1007/s007030170032 |
[11] |
Wang B, LinHo. Rainy season of the Asian-Pacific summer monsoon. Journal of Climate, 2002,15(4):386-398.
doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2 |
[12] |
Wang B. Climatic regimes of tropical convection and rainfall. Journal of Climate, 1994,7(7):1109-1118.
doi: 10.1175/1520-0442(1994)007<1109:CROTCA>2.0.CO;2 |
[13] |
Goswami B N. Interdecadal change in potential predictability of the Indian summer monsoon. Geophysical Research Letters, 2004,31(16):L16208. DOI: 10.1029/2004GL020337.
doi: 10.1029/2004GL020337 |
[14] |
Gao H, Jiang W, Li W J. Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in Eastern China. Journal of Meteorological Research, 2014,28(6):1075-1084.
doi: 10.1007/s13351-014-4327-5 |
[15] |
Wang B, Wu Z W, Li J P, et al. How to measure the strength of the East Asian summer monsoon. Journal of Climate, 2008,21(17):4449-4463.
doi: 10.1175/2008JCLI2183.1 |
[16] |
Pal J, Chaudhuri S, Roychowdhury A, et al. An investigation of the influence of the southern annular mode on Indian summer monsoon rainfall. Meteorological Applications, 2017,24(2):172-179.
doi: 10.1002/met.2017.24.issue-2 |
[17] |
Krishnamurthy L, Krishnamurthy V. Decadal scale oscillations and trend in the Indian monsoon rainfall. Climate Dynamics, 2014,43(1/2):319-331.
doi: 10.1007/s00382-013-1870-1 |
[18] |
Chen R, Shen J, Li C H, et al. Mid- to late-Holocene East Asian summer monsoon variability recorded in lacustrine sediments from Jingpo Lake, Northeastern China. The Holocene, 2015,25(3):454-468.
doi: 10.1177/0959683614561888 |
[19] |
Li J F, Liu X Q. Orbital- and suborbital-scale changes in the East Asian summer monsoon since the last deglaciation. The Holocene, 2018,28(8):1216-1224.
doi: 10.1177/0959683618771479 |
[20] |
Lu F Z, Ma C M, Zhu C, et al. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms. Climate Dynamics, 2019,52(1/2):969-989.
doi: 10.1007/s00382-018-4175-6 |
[21] | Jia J, Lu H, Wang Y J, et al. Variations in the iron mineralogy of a loess section in Tajikistan during the mid-Pleistocene and late Pleistocene: Implications for the climatic evolution in Central Asia. Geochemistry, Geophysics, Geosystems, 2018,19(4):1244-1258. |
[22] |
Cai Y, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252000 y. PNAS, 2015,112(10):2954-2959.
doi: 10.1073/pnas.1424035112 pmid: 25713347 |
[23] |
Srivastava P, Agnihotri R, Sharma D, et al. 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene. Scientific Reports, 2017,7(1):14515. DOI: 10.1038/s41598-017-15143-9.
doi: 10.1038/s41598-017-15143-9 pmid: 29109454 |
[24] |
Joshi L M, Kotlia B S, Ahmad S M, et al. Reconstruction of Indian monsoon precipitation variability between 4.0 and 1.6 ka BP using speleothem δ18O records from the Central Lesser Himalaya, India. Arabian Journal of Geosciences, 2017,10(16):365. DOI: 10.1007/s12517-017-3141-7.
doi: 10.1007/s12517-017-3145-3 |
[25] |
Kotlia B S, Singh A K, Joshi L M, et al. Precipitation variability in the Indian Central Himalaya during last ca. 4, 000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quaternary International, 2015,371:244-253.
doi: 10.1016/j.quaint.2014.10.066 |
[26] |
Jiang Z H, Jiang S, Shi Y, et al. Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. Journal of Geophysical Research: Atmospheres, 2017,122(2):600-613.
doi: 10.1002/2016JD025795 |
[27] |
Liu J B, Chen S Q, Chen J H, et al. Chinese cave δ18O records do not represent northern East Asian summer monsoon rainfall. PNAS, 2017,114(15):E2987-E2988. DOI: 10.1073/pnas.1703471114.
doi: 10.1073/pnas.1703471114 pmid: 28373580 |
[28] |
Wang B, Wu R G, Lau K M. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the Western North Pacific-East Asian monsoons. Journal of Climate, 2001,14(20):4073-4090.
doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2 |
[29] | Wang Y, Liu X Q, Herzschuh U. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews, 2010,103(3/4):135-153. |
[30] | Wang B. Thrusts and prospects on understanding and predicting Asian monsoon climate. Journal of Meteorological Research, 2008,22(4):383-403. |
[31] |
Wang Y B, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 2005,308(5723):854-857.
doi: 10.1126/science.1106296 pmid: 15879216 |
[32] |
Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008,322(5903):940-942.
doi: 10.1126/science.1163965 pmid: 18988851 |
[33] |
Liu J B, Chen F H, Chen J H, et al. Weakening of the East Asian summer monsoon at 1000-1100 A.D. within the Medieval Climate Anomaly: Possible linkage to changes in the Indian Ocean-western Pacific. Journal of Geophysical Research: Atmospheres, 2014,119(5):2209-2219.
doi: 10.1002/2013JD021199 |
[34] |
Shi F, Fang K Y, Xu C X, et al. Interannual to centennial variability of the South Asian summer monsoon over the past millennium. Climate Dynamics, 2017,49(7/8):2803-2814.
doi: 10.1007/s00382-016-3493-9 |
[35] |
Shi F, Zhao S, Guo Z Tv, et al. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years. Climate of the Past, 2017,13(12):1919-1938.
doi: 10.5194/cp-13-1919-2017 |
[36] |
Shi H, Wang B, Cook E R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records. Journal of Climate, 2018,31(19):7845-7861.
doi: 10.1175/JCLI-D-18-0003.1 |
[37] |
Shi H, Wang B. How does the Asian summer precipitation-ENSO relationship change over the past 544 years? Climate Dynamics, 2019,52(7/8):4583-4598.
doi: 10.1007/s00382-018-4392-z |
[38] |
Tan L C, Cai Y J, Cheng H, et al. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,280(3/4):432-439.
doi: 10.1016/j.palaeo.2009.06.030 |
[39] |
Zheng J Y, Wang W C, Ge Q S, et al. Precipitation variability and extreme events in Eastern China during the past 1500 years. Terrestrial, Atmospheric and Oceanic Sciences, 2006,17(3):579. DOI: 10.3319/TAO.2006.17.3.579(A).
doi: 10.3319/TAO.2006.17.3.579(A) |
[40] |
Tan L C, Cai Y J, Cheng H, et al. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth and Planetary Science Letters, 2018,482:580-590.
doi: 10.1016/j.epsl.2017.11.044 |
[41] |
Hao Z X, Zheng J Y, Zhang X Z, et al. Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years. International Journal of Climatology, 2016,36(1):467-475.
doi: 10.1002/joc.4367 |
[42] |
Yang B, Wang J L, Liu J J. A 1556 year-long early summer moisture reconstruction for the Hexi Corridor, Northwestern China. Science China Earth Sciences, 2019,62(6):953-963.
doi: 10.1007/s11430-018-9327-1 |
[43] |
Yang B, Kang S Y, Ljungqvist F C, et al. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia. Climate Dynamics, 2014,43(3/4):845-859.
doi: 10.1007/s00382-013-1962-y |
[44] |
Agnihotri R, Dutta K, Bhushan R, et al. Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planetary Science Letters, 2002,198(3/4):521-527.
doi: 10.1016/S0012-821X(02)00530-7 |
[45] |
Gu Y S, Liu H Y, Traoré D D, et al. ENSO-related droughts and ISM variations during the last millennium in tropical southwest China. Climate Dynamics, 2020,54(1/2):649-659.
doi: 10.1007/s00382-019-05019-1 |
[46] |
Yamada K, Kohara K, Ikehara M, et al. The variations in the East Asian summer monsoon over the past 3 kyrs and the controlling factors. Scientific Reports, 2019,9(1):5036. DOI: 10.1038/s41598-019-41359-y.
doi: 10.1038/s41598-019-41359-y pmid: 30903005 |
[47] |
Shi H, Wang B, Liu J, et al. Decadal-multidecadal variations of Asian Summer rainfall from the Little Ice Age to the Present. Journal of Climate, 2019,32(22):7663-7674.
doi: 10.1175/JCLI-D-18-0743.1 |
[48] |
Wang J L, Yang B, Ljungqvist F C, et al. The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. Journal of Quaternary Science, 2013,28(7):653-658.
doi: 10.1002/jqs.v28.7 |
[49] |
Wang J L, Yang B, Qin C, et al. Spatial patterns of moisture variations across the Tibetan Plateau during the past 700 years and their relationship with Atmospheric Oscillation modes. International Journal of Climatology, 2014,34(3):728-741.
doi: 10.1002/joc.3715 |
[50] | Gupta A K, Das M, Anderson D M. Solar influence on the Indian summer monsoon during the Holocene. Geophysical Research Letters, 2005,32(17):L17703. DOI: 10.1029/2005GL022685. |
[51] |
Shi F, Li J, Wilson R J. A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Scientific Reports, 2014,4:6739. DOI: 10.1038/srep06739.
doi: 10.1038/srep06739 pmid: 25338702 |
[52] |
Liu J, Wang B, Cane M A, et al. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 2013,493(7434):656-659.
doi: 10.1038/nature11784 |
[53] |
Dong L, Zhou T J. The Indian ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols. Journal of Climate, 2014,27(9):3348-3362.
doi: 10.1175/JCLI-D-13-00396.1 |
[54] |
Lee J-Y, Wang B. Future change of global monsoon in the CMIP5. Climate Dynamics, 2014,42(1/2):101-119.
doi: 10.1007/s00382-012-1564-0 |
[55] |
Burke C, Stott P. Impact of anthropogenic climate change on the East Asian summer monsoon. Journal of Climate, 2017,30(14):5205-5220.
doi: 10.1175/JCLI-D-16-0892.1 |
[56] | Li S L, Perlwitz J, Quan X W, et al. Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophysical Research Letters, 2008,35(5):L05804. DOI: 10.1029/2007GL032901. |
[57] |
Liu J, Wang B, Wang H L, et al. Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation. Climate Dynamics, 2011,36(1/2):323-336.
doi: 10.1007/s00382-009-0693-6 |
[58] |
Man W M, Zhou T J, Jungclaus J H. Simulation of the East Asian summer monsoon during the last millennium with the MPI earth system model. Journal of Climate, 2012,25(22):7852-7866.
doi: 10.1175/JCLI-D-11-00462.1 |
[59] |
Shi J, Yan Q, Jiang D B, et al. Precipitation variation over eastern China and arid central Asia during the past millennium and its possible mechanism: Perspectives from PMIP3 experiments. Journal of Geophysical Research: Atmospheres, 2016,121(20):11989-12004.
doi: 10.1002/2016JD025126 |
[60] |
Li J P, Wu Z W, Jiang Z H, et al. Can global warming strengthen the East Asian summer monsoon? Journal of Climate, 2010,23(24):6696-6705.
doi: 10.1175/2010JCLI3434.1 |
[61] |
Qian C, Zhou T J. Multidecadal variability of North China aridity and its relationship to PDO during 1900-2010. Journal of Climate, 2014,27(3):1210-1222.
doi: 10.1175/JCLI-D-13-00235.1 |
[62] |
Lu R Y, Dong B W, Ding H. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophysical Research Letters, 2006,33(24):L24701. DOI: 10.1029/2006GL027655.
doi: 10.1029/2006GL027655 |
[63] |
Luo F F, Li S L, Gao Y Q, et al. The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in CMIP5 models. Climate Dynamics, 2018,51(7/8):3023-3039.
doi: 10.1007/s00382-017-4062-6 |
[64] |
Wu Z W, Wang B, Li J P, et al. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. Journal of Geophysical Research: Atmospheres, 2009,114(D18):D18120. DOI: 10.1029/2009JD011733.
doi: 10.1029/2009JD011733 |
[65] |
Kumar K K, Rajagopalan B, Cane M A. On the weakening relationship between the Indian monsoon and ENSO. Science, 1999,284(5423):2156-2159.
doi: 10.1126/science.284.5423.2156 pmid: 10381876 |
[66] | Zhou Xin, Guo Zhengtang, Qin Li. Natural and anthropogenic impacts on the Asian monsoon precipitation during the 20th century. Scientia Sinica (Terrae), 2010,40(12):1718-1724. |
[ 周鑫, 郭正堂, 秦利. 近百年来自然和人为因素对亚洲季风降水影响的时间序列分析研究. 中国科学: 地球科学, 2010,40(12):1718-1724.] | |
[67] | Webster P. The elementary monsoon//Fein J S, Stephens P L. Monsoons. New York: Wiley Interscience, 1987: 3-32. |
[68] |
Trenberth K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation. Journal of Climate, 2000,13(22):3969-3993.
doi: 10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2 |
[69] |
Qian W H. Dry/wet alternation and global monsoon. Geophysical Research Letters, 2000,27(22):3679-3682.
doi: 10.1029/1999GL011255 |
[70] |
Wang B, Ding Q H. Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 2008,44(3/4):165-183.
doi: 10.1016/j.dynatmoce.2007.05.002 |
[71] |
Kay J E, Deser C, Phillips A, et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 2015,96(8):1333-1349.
doi: 10.1175/BAMS-D-13-00255.1 |
[72] |
Wang Z Y, Wang J L, Zhang S J. Variations of the global annual mean surface temperature during the past 2000 years: Results from the CESM1. Theoretical and Applied Climatology, 2019,137(3/4):2877-2887.
doi: 10.1007/s00704-019-02775-2 |
[73] | Shapiro A I, Schmutz W, Rozanov E, et al. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astronomy & Astrophysics, 2011,529:A67. DOI: 10.1051/0004-6361/201016173. |
[74] |
Gao C C, Robock A, Ammann C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. Journal of Geophysical Research: Atmospheres, 2008,113(D23):D23111. DOI: 10.1029/2008JD010239.
doi: 10.1029/2008JD010239 |
[75] |
MacFarling Meure C, Etheridge D, Trudinger C, et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters, 2006,33(14):L14810. DOI: 10.1029/2006GL026152.
doi: 10.1029/2006GL026152 |
[76] |
Kaplan J O, Krumhardt K M, Ellis E C, et al. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 2011,21(5):775-791.
doi: 10.1177/0959683610386983 |
[77] |
Berger A. Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 1978,35(12):2362-2367.
doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2 |
[78] |
Bothe O, Jungclaus J H, Zanchettin D. Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Climate of the Past, 2013,9(6):2471-2487.
doi: 10.5194/cp-9-2471-2013 |
[79] |
Schmidt G A, Jungclaus J H, Ammann C M, et al. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model Development, 2012,5(1):185-191.
doi: 10.5194/gmd-5-185-2012 |
[80] |
Yan M, Wang Z Y, Kaplan J O, et al. Comparison between reconstructions of global anthropogenic land cover change over past two millennia. Chinese Geographical Science, 2013,23(2):131-146.
doi: 10.1007/s11769-013-0596-7 |
[81] |
Wang Z Y, Li Y, Liu B, et al. Global climate internal variability in a 2000-year control simulation with Community Earth System Model (CESM). Chinese Geographical Science, 2015,25(3):263-273.
doi: 10.1007/s11769-015-0754-1 |
[82] |
Liu F, Li J B, Wang B, et al. Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Climate Dynamics, 2018,50(9/10):3799-3812.
doi: 10.1007/s00382-017-3846-z |
[83] |
Ning L, Liu J, Wang Z Y, et al. Different influences on the tropical Pacific SST gradient from natural and anthropogenic forcing. International Journal of Climatology, 2018,38(4):2015-2028.
doi: 10.1002/joc.2018.38.issue-4 |
[84] |
Sun W Y, Liu J, Wang B, et al. A "La Niña-like" state occurring in the second year after large tropical volcanic eruptions during the past 1500 years. Climate Dynamics, 2019,52(12):7495-7509.
doi: 10.1007/s00382-018-4163-x |
[85] |
Liu F, Chai J, Wang B, et al. Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 2016,6:24331. DOI: 10.1038/srep24331.
doi: 10.1038/srep24331 pmid: 27063141 |
[86] |
Yan M, Liu J, Wang Z. Global climate responses to land use and land cover changes over the past two millennia. Atmosphere, 2017,8(12):64. DOI: 10.3390/atmos8040064.
doi: 10.3390/atmos8040064 |
[87] |
Sun W Y, Liu J, Wang Z Y. Simulation of centennial-scale drought events over eastern China during the past 1500 years. Journal of Meteorological Research, 2017,31(1):17-27.
doi: 10.1007/s13351-017-6090-x |
[88] |
Chai J, Liu F, Liu J, et al. Enhanced global monsoon in Present Warm Period due to natural and anthropogenic forcings. Atmosphere, 2018,9(4):136. DOI: 10.3390/atmos9040136.
doi: 10.3390/atmos9040136 |
[89] |
He C, Zhou T J. The two interannual variability modes of the Western North Pacific Subtropical High simulated by 28 CMIP5-AMIP models. Climate Dynamics, 2014,43(9/10):2455-2469.
doi: 10.1007/s00382-014-2068-x |
[90] |
Wang B, Liu J, Kim H J, et al. Recent change of the global monsoon precipitation (1979-2008). Climate Dynamics, 2012,39(5):1123-1135.
doi: 10.1007/s00382-011-1266-z |
[91] |
Wang B, Liu J, Kim H J, et al. Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. PNAS, 2013,110(14):5347-5352.
doi: 10.1073/pnas.1219405110 pmid: 23509281 |
[92] |
Liu J, Wang B, Yim S Y, et al. What drives the global summer monsoon over the past millennium? Climate Dynamics, 2012,39(5):1063-1072.
doi: 10.1007/s00382-012-1360-x |
[93] | Diaz H F, Markgraf V. El Niño and the Southern Oscillation:Multiscale Variability and Global and Regional Impacts. Cambridge: Cambridge University Press, 2000:1-14. |
[94] |
Wang B, Li J, He Q. Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957-2016). Advances in Atmospheric Sciences, 2017,34(10):1235-1248.
doi: 10.1007/s00376-017-7016-3 |
[95] |
Wang B, Li J, Cane M A, et al. Toward predicting changes in the land monsoon rainfall a decade in advance. Journal of Climate, 2018,31(7):2699-2714.
doi: 10.1175/JCLI-D-17-0521.1 |
[96] |
North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of Empirical Orthogonal Functions. Monthly Weather Review, 1982,110(7):699-706.
doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 |
[97] |
Huang R H, Wu Y F. The influence of ENSO on the summer climate change in China and its mechanism. Advances in Atmospheric Sciences, 1989,6(1):21-32.
doi: 10.1007/BF02656915 |
[98] |
Wang P X, Wang B, Cheng H, et al. The global monsoon across timescales: Coherent variability of regional monsoons. Climate of the Past, 2014,10(6):2007-2052.
doi: 10.5194/cp-10-2007-2014 |
[99] |
Clement A C, Seager R, Cane M A, et al. An ocean dynamical thermostat. Journal of Climate, 1996,9(9):2190-2196.
doi: 10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2 |
[100] | Wang P X. Global monsoon in a geological perspective. Chinese Science Bulletin, 2009,54(7):1113-1136. |
[101] |
Matsumura S, Horinouchi T. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high. Scientific Reports, 2016,6(1):37765. DOI: 10.1038/srep37765.
doi: 10.1038/srep37765 |
[102] |
Vecchi G A, Soden B J, Wittenberg A T, et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 2006,441(7089):73-76.
doi: 10.1038/nature04744 pmid: 16672967 |
[103] | Folland C K, Parker D E, Colman A W, et al. Large Scale Modes of Ocean Surface Temperature since the Late Nineteenth Century. Berlin: Springer, 1999: 73-102. |
[104] |
Wu B, Zhou T J, Li T. Impacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon. Journal of Climate, 2016,29(9):3253-3271.
doi: 10.1175/JCLI-D-15-0105.1 |
[105] |
Dong L, Zhou T, Dai A, et al. The footprint of the inter-decadal Pacific Oscillation in Indian Ocean sea surface temperatures. Scientific Reports, 2016,6:21251. DOI: 10.1038/srep21251.
doi: 10.1038/srep21251 pmid: 26884089 |
[106] |
Schurer A P, Tett S F B, Hegerl G C . Small influence of solar variability on climate over the past millennium. Nature Geoscience, 2014,7(2):104-108.
doi: 10.1038/NGEO2040 |
[107] |
Wang J L, Yang B, Ljungqvist F C, et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years. Nature Geoscience, 2017,10(7):512-517.
doi: 10.1038/ngeo2962 |
[108] |
Ratna S B, Osborn T J, Joshi M, et al. Identifying teleconnections and multidecadal variability of East Asian surface temperature during the last millennium in CMIP5 simulations. Climate of the Past, 2019,15(5):1825-1844.
doi: 10.5194/cp-15-1825-2019 |
[1] | 李育, 王乃昂, 李卓仑, 周雪花, 张成琦. 河西走廊盐池晚冰期以来沉积地层变化综合分析——来自夏季风西北缘一个关键位置的古气候证据[J]. 地理学报, 2013, 68(7): 933-944. |