地理学报 ›› 2020, Vol. 75 ›› Issue (7): 1494-1511.doi: 10.11821/dlxb202007012
收稿日期:
2019-05-27
修回日期:
2020-04-05
出版日期:
2020-07-25
发布日期:
2020-09-25
作者简介:
王彦君(1989-), 女, 河北邢台人, 博士, 研究方向为河流地貌学和河床演变学。E-mail: 基金资助:
WANG Yanjun1,2(), WU Baosheng1, ZHONG Deyu1
Received:
2019-05-27
Revised:
2020-04-05
Published:
2020-07-25
Online:
2020-09-25
Supported by:
摘要:
准确把握环境变化下前期水沙条件对当前河床形态调整的影响,建立非平衡态河床形态调整的模拟方法,对深化河床非平衡调整过程的认识至关重要。基于黄河下游花园口—利津河段1965—2015年的水沙和沿程82个大断面数据,首先统计分析了不同河段主槽断面形态参数(面积、河宽、水深和河相系数)的调整过程及其对水沙变化的响应规律;进而以水沙因子作为主槽断面形态调整的主控因素,采用滞后响应模型的多步递推模式,建立了其对前期水沙条件变化的滞后响应模型。结果表明,各河段面积、河宽和水深经历了减小—增加—减小—增加的变化过程,并且其与4 a滑动平均流量和含沙量之间分别呈正相关和负相关;而河相系数孙口以上段整体减小,孙口以下段呈增加—减小—增加—减小的变化过程,除花高段1965—1999年外,其与流量呈负相关,与含沙量呈正相关。滞后响应模型在黄河下游主槽断面形态对前期水沙条件响应过程的应用表明,各参数模型计算值与实测值符合程度均较高,模型能够很好地模拟主槽断面形态对水沙变化的响应调整过程,模型计算结果显示主槽断面形态调整受当年在内的前8 a水沙条件的累积影响,当年和前7 a水沙条件对当前断面形态的影响权重分别约为30%和70%。本文模型有助于深化前期水沙条件对当前河床形态调整影响机理的认识,并为未来不同水沙情形下主槽断面形态的预测提供了有效计算方法。
王彦君, 吴保生, 钟德钰. 黄河下游主槽断面形态对水沙变化响应过程的模拟[J]. 地理学报, 2020, 75(7): 1494-1511.
WANG Yanjun, WU Baosheng, ZHONG Deyu. Simulation of the main-channel cross-section geometry of the Lower Yellow River in response to water and sediment changes[J]. Acta Geographica Sinica, 2020, 75(7): 1494-1511.
表2
式(4)中不同河段主槽断面形态变量计算参数
河段 | K | a | b | β | R2 | K | a | b | β | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
主槽面积(A) | 主槽河宽(W) | ||||||||||
花高段 | 0.69 | 1.34 | -0.40 | 0.42 | 0.89 | 0.05 | 1.50 | -0.12 | 0.35 | 0.86 | |
高孙段 | 0.75 | 1.28 | -0.38 | 0.40 | 0.86 | 1.13 | 0.93 | -0.04 | 0.34 | 0.86 | |
孙艾段 | 4.40 | 0.97 | -0.21 | 0.37 | 0.89 | 11.12 | 0.57 | -0.02 | 0.34 | 0.80 | |
艾利段 | 23.35 | 0.71 | -0.17 | 0.35 | 0.94 | 42.87 | 0.32 | 0.04 | 0.24 | 0.94 | |
主槽水深(h) | 主槽断面河相系数(ξ) | ||||||||||
花高段 | 12.08 | -0.13 | -0.31 | 0.27 | 0.90 | 0.01 | 0.94 | 0.25 | 0.11 | 0.87 | |
高孙段 | 0.64 | 0.36 | -0.34 | 0.42 | 0.79 | 1.09 | 0.15 | 0.36 | 0.12 | 0.63 | |
孙艾段 | 0.38 | 0.42 | -0.21 | 0.42 | 0.88 | 10.26 | -0.18 | 0.26 | 0.25 | 0.62 | |
艾利段 | 0.45 | 0.43 | -0.23 | 0.45 | 0.86 | 14.53 | -0.29 | 0.30 | 0.31 | 0.71 |
[1] | Lacey G. Stable channels in alluvium. Proceedings of the Institution of Civil Engineers, 1929,229:259-292. |
[2] | Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey Professional Paper, 1953,252. |
[3] | Yu Jun. Exploration and application of hydraulic geometry in plain river. Yangtze River, 1982(3):61-67. |
[ 俞俊. 平原河流河相公式的探求和应用. 人民长江, 1982(3):61-67.] | |
[4] | Ni Jinren, Zhang Ren. Methods and their relationships in studies of regime relations. Acta Geographica Sinica, 1992,47(4):368-375. |
[ 倪晋仁, 张仁. 河相关系研究的各种方法及其间关系. 地理学报, 1992,47(4):368-375.] | |
[5] | Chen Xujian, Hu Chunhong. Regime theory on river bed evolution and its application in the Lower Yellow River. Journal of Sediment Research, 2006(3):14-22. |
[ 陈绪坚, 胡春宏. 河床演变的均衡稳定理论及其在黄河下游的应用. 泥沙研究, 2006(3):14-22.] | |
[6] |
Liu F, Chen S L, Peng J, et al. Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008. Journal of Geographical Sciences, 2011,21(6):1047-1061.
doi: 10.1007/s11442-011-0899-5 |
[7] |
Cui B L Chang X L Shi W Y. Abrupt changes of runoff and sediment load in the lower reaches of the Yellow River, China. Water Resources, 2014,41(3):252-260.
doi: 10.1134/S009780781403004X |
[8] | Wei Y H, Jiao J Y, Zhao G J, et al. Spatial-temporal variation and periodic change in streamflow and suspended sediment discharge along the mainstream of the Yellow River during 1950-2013. Catena, 2016,140:105-115. |
[9] |
Xia X H, Dong J W, Wang M H, et al. Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River. The Science of the Total Environment, 2016,571:487-497.
doi: 10.1016/j.scitotenv.2016.07.015 pmid: 27401281 |
[10] | Li X N, Zhong D Y, Zhang Y J, et al. Wide river or narrow river: Future river training strategy for Lower Yellow River under global change. International Journal of Sediment Research, 2018,33(3):271-284. |
[11] | Peng Jun, Chen Shenliang, Liu Feng, et al. Erosion and siltation processes in the Lower Yellow River during different river courses into the sea. Acta Geographica Sinica, 2010,65(5):613-622. |
[ 彭俊, 陈沈良, 刘锋, 等. 不同流路时期黄河下游河道的冲淤变化过程. 地理学报, 2010,65(5):613-622.] | |
[12] | Lu Zhongchen, Chen Shaofeng, Chen Hao. The evolutionary tendency forecast of channel morphology and river state of the wandering braided rivers in the Lower Yellow River. Acta Geographica Sinica, 2000,55(6):729-736. |
[ 陆中臣, 陈劭锋, 陈浩. 黄河下游游荡段河道平面形态与河势变化趋势预测. 地理学报, 2000,55(6):729-736.] | |
[13] | Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Global and Planetary Change, 2017,157:93-113. |
[14] | van Maren D S, Yang M, Wang Z B. Predicting the morphodynamic response of silt-laden rivers to water and sediment release from reservoirs: Lower Yellow River, China. Journal of Hydraulic Engineering, 2011,137(1):90-99. |
[15] | Wang S J, Li Y K. Channel variations of the different channel pattern reaches in the Lower Yellow River from 1950 to 1999. Quaternary International, 2011,244(2):238-247. |
[16] | Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Global and Planetary Change, 2017,157:93-113. |
[17] | Sun Z Y, Wang W Z, Li Y, et al. Can the narrowing of the Lower Yellow River by regulation result in non-siltation and even channel scouring? Journal of Geographical Sciences, 2016,26(9):1337-1348 |
[18] | Tian S M, Wang W H, Xie B F, et al. Fluvial processes of the downstream reaches of the reservoirs in the Lower Yellow River. Journal of Geographical Sciences, 2016,26(9):1321-1336. |
[19] | Feng Pulin, Liang Zhiyong, Huang Jinchi, et al. Study on relation between the change of channel form and the series of water and sediment in the Lower Yellow River. Journal of Sediment Research, 2005(2):66-74. |
[ 冯普林, 梁志勇, 黄金池, 等. 黄河下游河槽形态演变与水沙关系研究. 泥沙研究, 2005(2):66-74.] | |
[20] | Hu Chunhong, Chen Jianguo, Liu Dabin, et al. Studies on the features of cross section's profile in the Lower Yellow River under the conditions of variable incoming water and sediment. Journal of Hydraulic Engineering, 2006,37(11):1283-1289. |
[ 胡春宏, 陈建国, 刘大滨, 等. 水沙变异条件下黄河下游河道横断面形态特征研究. 水利学报, 2006,37(11):1283-1289.] | |
[21] |
Xia J Q, Li X J, Zhang X L, et al. Recent variation in reach-scale bankfull discharge in the Lower Yellow River. Earth Surface Processes and Landforms, 2014,39(6):723-734.
doi: 10.1002/esp.3474 |
[22] | Xia J Q, Li X J, Li T, et al. Response of reach-scale bankfull channel geometry to the altered flow and sediment regime in the Lower Yellow River. Geomorphology, 2014,213:255-265. |
[23] | Wu Baosheng. Delayed response model for fluvial processes of alluvial rivers: I: Model development. Journal of Sediment Research, 2008(6):1-7. |
[ 吴保生. 冲积河流河床演变的滞后响应模型: I. 模型建立. 泥沙研究, 2008(6):1-7.] | |
[24] | Wu Baosheng. Delayed response model for fluvial processes of alluvial rivers: II. Model applications. Journal of Sediment Research, 2008(6):30-37. |
[ 吴保生. 冲积河流河床演变的滞后响应模型: II. 模型应用. 泥沙研究, 2008(6):30-37.] | |
[25] | Wu B S, Wang G Q, Xia J Q, et al. Response of bankfull discharge to discharge and sediment load in the Lower Yellow River. Geomorphology, 2008,100(3):366-376. |
[26] | Wu B S, X J Q, Fu X D, et al. Effect of altered flow regime on bankfull area of the Lower Yellow River, China. Earth Surface Processes and Landforms, 2008,33(10):1585-1601. |
[27] | Wu B S, Li L Y. Delayed-response model for bankfull discharge predictions in the Yellow River. International Journal of Sediment Research, 2011,26(4):445-459. |
[28] | Wu B S, Zheng S, Colin R T. A general framework for using the rate law to simulate morphological response to disturbance in the fluvial system. Progress in Physical Geography, 2012,36(5):575-597. |
[29] | Zheng S, Wu B S, Colin R T, et al. Morphological evolution of the North Fork Toutle River following the eruption of Mount St. Helens, Washington. Geomorphology, 2014,208:102-116. |
[30] | Zheng S, Wu B S, Colin R T, et al. Case study of variation of sedimentation in the Yellow and Wei rivers. Journal of Hydraulic Engineering, 2015,141(3):05014009. Doi: 10.1061/(ASCE)HY.1943-7900.0000980. |
[31] | Zheng Shan, Tan Guangmin, Wu Baosheng, et al. Calculation method for water stage at Lijin in response to delta evolution. Journal of Hydraulic Engineering, 2015,46(3):315-325. |
[ 郑珊, 谈广鸣, 吴保生, 等. 利津水位对河口演变响应的计算方法. 水利学报, 2015,46(3):315-325.] | |
[32] | Wu Baosheng, Zheng Shan. Delayed Response Theory and Applications for Fluvial Processes. Beijing: China Water & Power Press, 2015. |
[ 吴保生, 郑珊. 河床演变的滞后响应理论与应用. 北京: 中国水利水电出版社, 2015.] | |
[33] | Zheng S, Wu B S, Wang K R, et al. Evolution of the Yellow River Delta, China: Impacts of channel avulsion and progradation. International Journal of Sediment Research, 2017,32(1):34-44. |
[34] | Shao Wenwei, Wu baosheng, Wang Yanjun, et al. Simulation of sedimentation processes in dry and wet seasons in the Xiaobeiganliu reach of the Yellow River. Acta Geographica Sinica, 2018,73(5):880-892. |
[ 邵文伟, 吴保生, 王彦君, 等. 黄河小北干流汛期和非汛期冲淤过程模拟. 地理学报, 2018,73(5):880-892.] | |
[35] | Wu Baosheng, Zhang Yuanfeng, Shen Guanqing, et al. Study on the Conditions of Water and Sediment to Maintain the Stable Main Channel in the Yellow River. Zhengzhou: The Yellow River Water Conservancy Press, 2010. |
[ 吴保生, 张原锋, 申冠卿, 等. 维持黄河主槽不萎缩的水沙条件研究. 郑州: 黄河水利出版社, 2010.] | |
[36] | Wang Suiji. Analysis of effect of water and sediment load and evolution trend of the different channel patterns in the lower Yellow River. Acta Sedimentologic Sinica, 2009,27(6):1163-1171. |
[ 王随继. 黄河下游不同河型河道的水沙效应及演变趋势分析. 沉积学报, 2009,27(6):1163-1171.] | |
[37] | Wang Suiji. Comparision of depositional dynamics among the braided, meandering, and straight channel reaches in the lower Yellow River. Acta Sedimentologica Sinica, 2010,28(2):307-313, 330. |
[ 王随继. 黄河下游辫状、弯曲和顺直河段间沉积动力特征比较. 沉积学报, 2010,28(2):307-313, 330.] | |
[38] | Zheng Shan. Study on the simulation of non-equilibrium fluvial processes[D]. Beijing: Tsinghua University, 2013. |
[ 郑珊. 非平衡态河床演变过程模拟研究[D]. 北京: 清华大学, 2013.] | |
[39] | Wang Yanjun, Wu Baosheng, Shen Guanqing. Adjustment processes in main channel geometries of the Lower Yellow River before and after the operation of Xiaolangdi Reservoir during 1986-2015. Acta Geographica Sinica, 2019,74(11):2411-2427. |
[ 王彦君, 吴保生, 申冠卿. 1986—2015年小浪底水库运行前后黄河下游主槽调整规律. 地理学报, 2019,74(11):2411-2427.] |
[1] | 程亦菲, 夏军强, 周美蓉, 王英珍. 黄河下游游荡段排沙比对水沙条件与断面形态的响应[J]. 地理学报, 2021, 76(1): 127-138. |
[2] | 王彦君, 吴保生, 申冠卿. 1986-2015年小浪底水库运行前后黄河下游主槽调整规律[J]. 地理学报, 2019, 74(11): 2411-2427. |
[3] | 邵文伟,吴保生,王彦君,章若茵. 黄河小北干流汛期和非汛期冲淤过程模拟[J]. 地理学报, 2018, 73(5): 880-892. |
[4] | 孙倩,于坤霞,李占斌,李鹏,张晓明,龚珺夫. 黄河中游多沙粗沙区水沙变化趋势及其主控因素的贡献率[J]. 地理学报, 2018, 73(5): 945-956. |
[5] | 傅开道, 黄河清, 钟荣华, 王兴勇, 苏斌. 水库下游水沙变化与河床演变研究综述[J]. 地理学报, 2011, 66(9): 1239-1250. |
[6] | 许炯心. 黄河干流龙门至三门峡间泥沙沉积汇的研究[J]. 地理学报, 2009, 64(5): 515-530. |
[7] | 杨吉山, 许炯心, 廖建华. 不同水沙条件下黄河下游二级悬河的发展过程[J]. 地理学报, 2006, 61(1): 66-76. |
[8] | 许炯心. 长江宜昌-武汉河段泥沙年冲淤量对水沙变化的响应[J]. 地理学报, 2005, 60(2): 337-348. |
[9] | 许炯心. 无定河流域侵蚀产沙过程对水土保持措施的响应[J]. 地理学报, 2004, 59(6): 972-981. |
[10] | 张欧阳,许炯心,张红武. 黄河游荡河段河床形态调整对洪水过程的响应[J]. 地理学报, 2002, 57(6): 648-654. |
[11] | 石伟,王光谦. 黄河下游生态需水量及其估算[J]. 地理学报, 2002, 57(5): 595-602. |
[12] | 陆中臣, 陈劭锋, 陈浩. 黄河下游游荡段河道平面形态与河势变化趋势预测[J]. 地理学报, 2000, 55(6): 729-736. |
[13] | 许炯心, 张欧阳. 黄河下游游荡段河床调整对于水沙组合的复杂响应[J]. 地理学报, 2000, 55(3): 274-280. |
[14] | 许炯心. 黄河上中游产水产沙系统与下游河道沉积系统的耦合关系[J]. 地理学报, 1997, 52(5): 421-429. |
[15] | 尤联元, 杨积武. 环境变化对黄河下游来水来沙的影响[J]. 地理学报, 1995, 50(1): 25-34. |