地理学报 ›› 2020, Vol. 75 ›› Issue (3): 544-557.doi: 10.11821/dlxb202003008
孙芳蒂1, 马荣华2
收稿日期:
2019-02-18
修回日期:
2020-02-01
出版日期:
2020-03-25
发布日期:
2020-05-25
作者简介:
孙芳蒂(1983-), 女, 博士, 讲师, 主要从事地表覆盖动态变化监测研究。E-mail: heaven816@163.com
基金资助:
SUN Fangdi1, MA Ronghua2
Received:
2019-02-18
Revised:
2020-02-01
Published:
2020-03-25
Online:
2020-05-25
Supported by:
摘要:
鄱阳湖是中国第一大淡水湖,对鄱阳湖的水文变化进行持续监测可以为流域内生态环境变化提供基础数据,有利于研究其与长江和流域内河流的交互关系,更好地服务于陆面过程模式和水资源管理。本文利用卫星测高数据反演的鄱阳湖水位数据与MODIS数据结合,对鄱阳湖2000—2015年的水位、水域面积和水量变化进行研究,并通过水量平衡模型,推导出了同期长江—鄱阳湖的水量交互。研究发现,2000—2015年鄱阳湖面积呈现波动性变化,最大水域面积为3600 km 2,是最小水域面积482 km 2的7.5倍。2004年、2007年、2009年和2011年水域面积比较低,2012年后形势好转。每年1月、2月、12月份是鄱阳湖干季,水域面积低至500 km 2,湖口处水位可低至4.71 m,湖面从南往北倾斜,南北水位差异达2.59 m。相对于2000—2015年最低水量,干季时湖泊水量平均增加量为3 km 3。每年6—9月份是鄱阳湖的湿季,水域面积一般大于2670 km 2,水位高于15 m,南北水位差异不大,相对于2000—2015年最低水量,湿季时湖泊水量平均增加量为12 km 3。2000—2015年鄱阳湖流入长江的水量范围为-7~40.66 km 3,每年有93.33%的时间水流从鄱阳湖流入长江。流入长江的水量多少具有明显的季节性,通常5月、6月流入长江的水量高于7月、8月,主要因为7月、8月长江中上游降水增加,长江干流来水增多,对鄱阳湖湖水倒灌有一定的顶托作用。
孙芳蒂, 马荣华. 鄱阳湖水文特征动态变化遥感监测[J]. 地理学报, 2020, 75(3): 544-557.
SUN Fangdi, MA Ronghua. Hydrologic changes of Poyang Lake based on radar altimeter and optical sensor[J]. Acta Geographica Sinica, 2020, 75(3): 544-557.
[1] | Cai X, Feng L, Hou X , et al. Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze River Basin from 2000 to 2014. Scientific Reports, 2016,6(1):1-5. |
[2] | Feng L, Hu C, Chen X , et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 2012,121:80-92. |
[3] | Han X, Chen X, Feng L . Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sensing of Environment, 2015,156:426-437. |
[4] | Smith L C . Satellite remote sensing of river inundation area, stage and processes: A review. Hydrological Processes, 1997,11(10):1427-1439. |
[5] | Alsdorf D E, Lettenmaier D P . Tracking fresh water from space. Science, 2003,301:1485-1488. |
[6] | Cazenave A, Milly P C D, Douville H , et al. Space techniques used to measure change in terrestrial waters. Eos Transactions American Geophysical Union, 2004,85(6):59-60. |
[7] | Alsdorf D E, Rodríguez E, Lettenmaier D P . Measuring surface water from space. Reviews of Geophysics, 2007,45(2):1-24. |
[8] | Birkett C M . The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. Journal of Geophysical Research-Oceans, 1995,100:25179-25204. |
[9] | Birkett C M, Mertes L A K, Dunne T , et al. Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry. Journal of Geophysical Research, 2002,107(D20):1-26. |
[10] | Tapley B, Bettadpur S, Ries J , et al. GRACE measurements of mass variability in the earth system. Science, 2004,305:503-505. |
[11] | Papa F, Prigent C, Aires F , et al. Interannual variability of surface water extent at the global scale, 1993-2004. Journal of Geophysical Research, 2010,115(D12111):1-17. |
[12] | Prigent C, Papa F, Aires F , et al. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research, 2007,112(D12107):1-13. |
[13] | Crétaux J F, Kouraev A K, Papa F , et al. Water balance of the big Aral Sea from satellite remote sensing and in situ observations. Great Lakes Research, 2005,31:520-534. |
[14] | Schwatke C, Dettmering D, Bosch W , et al. DAHITI-an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrology and Earth System Science, 2015,19:4345-4364. |
[15] | Birkett C M, Reynolds C, Beckley B , et al. From Research to Operations: The USDA global reservoir and lake monitor. //Vignudelli S, Kostianoy G A, Cipollini P et al. Coastal Altimetry. Berlin Heidelberg: Springer-verlag, 2011. |
[16] | Berry P A M, Wheeler J L . Development of Algorithms for Exploitation of JASON2-ENISAT Altimetry for the Generation of a River and Lake Product. Product Handbook v3.5. Leicester: De Montfort University, 2009. |
[17] | Crétaux J F, Jelinski W, Calmant S , et al. A lake database to monitor in the near real time water level and storage variations from remote sensing data. Advances in Space Research, 2011,4(7):1497-1507. |
[18] | Townshend J R G, Justice C O . Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing. Remote Sensing of Environment, 2002,83:352-360. |
[19] | Wessels K J, De Fries R S, Dempewolf J , et al. Mapping regional land cover with MODIS data for biological conservation: Examples from the great Yellowstone ecosystem, USA and Pará State, Brazil. Remote Sensing of Environment, 2004,92:67-83. |
[20] | Sun F D, Zhao Y Y, Gong P , et al. Monitoring dynamic changes of global land cover types: Fluctuations of major lakes in China every 8 days 2000-2010. Chinese Science Bulletin, 2014,59(2):171-189. |
[21] | Frappart F, Seylerb F, Martinezc J M , et al. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, 2005,99(4):387-399. |
[22] | Song C, Huang B, Ke L . Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 2013,135:25-35. |
[23] | Wang Sumin, Dou Hongshen China Lake Catalogue. Beijing: Science Press, 1998. |
[ 王苏民, 窦红申 . 中国湖泊志. 北京: 科学出版社, 1998.] | |
[24] | Liu Yong, Guo Huaicheng, Zhou Feng , et al. Role of water level fluctuation on aquatic vegetation in lakes. Acta Ecologica Sinica, 2006,26:3117-3126. |
[ 刘永, 郭怀成, 周丰 , 等. 湖泊水位变动对水生植被的影响机理及其调控方法. 生态学报, 2006,26:3117-3126.] | |
[25] | Zheng Y . Prediction of the distribution of C3 and C4 plant species from a GIS-based model: A case study in Poyang Lake, China[D]. Enschede: University of Twente, 2009. |
[26] | Harris J, Zhuang H . An Ecosystem Approach to Resolving Conflicts among Ecological and Economic Priorities for Poyang Lake Wetlands. Gland, Switzerland: Wetlands International-IUCN SSC Crane Specialist Group Publication, 2010. |
[27] | Ma Wei, Liao Wengen, Kuang Shangfu , et al. Study on the quantitative relationship of oncomelania hupensis diffusion with the flow regime of the Dongting Lake. Journal of China Institute of Water Resources and Hydropower Research, 2009,7:15-20. |
[ 马巍, 廖文根, 匡尚富 , 等. 洞庭湖钉螺扩散与疫区水情变化的定量关系研究. 中国水利水电科学研究院学报, 2009,7:15-20.] | |
[28] | Chen Jun, Gong Peng, Chen Lijun , et al. Report on Remote Sensing Monitoring of Global Ecosystem and Environment: Land Surface Water. Beijing: National Remote Sensing Center of China, 2013. |
[ 陈军, 宫鹏, 陈利军 , 等. 全球生态环境遥感监测2012年度报告: 陆表水域面积分布状况. 北京: 国家遥感中心, 2013.] | |
[29] | Gong P, Wang J, Yu L , et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013,34(7):2607-2654. |
[30] | Vapnik V . Estimation of dependences based on empirical data (in Russian). Moscow: Nauka (English translation: Kotz S. New York: Springer-verlag), 1982. |
[31] | Foody G M, Mathur A . Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 2004,93:107-117. |
[32] | Mountrakis G, Im J, Ogole C . Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66:247-259. |
[33] | Feyisa G L, Meilby H, Fensholt R , et al. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 2014,140:23-35. |
[34] | Zheng J, Ke C, Shao Z , et al. Monitoring changes in the water volume of Hulun Lake by integrating satellite altimetry data and Landsat images between 1992 and 2010. Journal of Applied Remote Sensing, 2016,10(1):016029. |
[35] | Liu Jian, Zhang Qi, Xu Chongyu , et al. A study on the causes and the atmospheric circulation characteristics of abnormal rainfall in south China during 2008. Tropical Geography, 2009,29(3):213-218. |
[ 刘健, 张奇, 许崇育 , 等. 近50年鄱阳湖流域径流变化特征研究. 热带地理, 2009,29(3):213-218.] | |
[36] | Guo Hua, Hu Qi, Zhang Qi . Changes in hydrological interactions of the Yangtze River and the Poyang Lake in China during 1957-2008. Acta Geographica Sinica, 2011,66(5):609-618. |
[ 郭华, HU Qi, 张奇 . 近50年来长江与鄱阳湖水文相互作用的变化. 地理学报, 2011,66(5):609-618.] | |
[37] | Zhan Shougen . Design of flood operation mode of hydraulic complex. Yellow River, 2013,35(12):112-114. |
[ 詹寿根 . 江西五河水利枢纽工程洪水调度运行动态控制. 人民黄河, 2013,35(12):112-114.] |
[1] | 柴元方, 邓金运, 杨云平, 孙昭华, 李义天, 朱玲玲. 长江中游荆江河段同流量—水位演化特征及驱动成因[J]. 地理学报, 2021, 76(1): 101-113. |
[2] | 林峰, 陈兴伟, 姚文艺, 方艺辉, 邓海军, 吴杰峰, 林炳青. 基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析[J]. 地理学报, 2020, 75(5): 1065-1078. |
[3] | 刘晓琼, 吴泽洲, 刘彦随, 赵新正, 芮旸, 张健. 1960-2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820. |
[4] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |
[5] | 李美娇,何凡能,杨帆,李士成. 元代前期省域耕地面积重建[J]. 地理学报, 2018, 73(5): 832-842. |
[6] | 李玉辉,丁智强,吴晓月. 基于Strahler面积—高程分析的云南石林县域喀斯特地貌演化的量化研究[J]. 地理学报, 2018, 73(5): 973-985. |
[7] | 邓金运, 范少英. 基于能量的鄱阳湖—长江相互作用表征指标研究[J]. 地理学报, 2017, 72(9): 1645-1654. |
[8] | 朱玲玲, 杨霞, 许全喜. 上荆江枯水位对河床冲刷及水库调度的综合响应[J]. 地理学报, 2017, 72(7): 1184-1194. |
[9] | 崔颖颖, 朱立平, 鞠建廷, 罗伦, 王永杰. 基于流量监测的西藏东南部然乌湖水量平衡季节变化及其补给过程分析[J]. 地理学报, 2017, 72(7): 1221-1234. |
[10] | 杨云平, 张明进, 孙昭华, 韩剑桥, 李华国, 由星莹. 三峡大坝下游水位变化与河道形态调整关系研究[J]. 地理学报, 2017, 72(5): 776-789. |
[11] | 张鲜鹤, 王欣, 刘时银, 郭万钦, 魏俊锋. 基于第二次冰川编目数据的中国冰川高度结构特征分析[J]. 地理学报, 2017, 72(3): 397-406. |
[12] | 何凡能, 李美娇, 刘浩龙. 北宋路域耕地面积重建及时空特征分析[J]. 地理学报, 2016, 71(11): 1967-1978. |
[13] | 侯西勇, 侯婉, 毋亭. 20世纪40年代初以来中国大陆沿海主要海湾形态变化[J]. 地理学报, 2016, 71(1): 118-129. |
[14] | 江丰, 齐述华, 廖富强, 张秀秀, 王点, 朱静瑄, 熊梦雅. 2001-2010年鄱阳湖采砂规模及其水文泥沙效应[J]. 地理学报, 2015, 70(5): 837-845. |
[15] | 金双彦, 张遂业, 马志瑾, 张萍. 水量统一调度以来黄河内蒙古河段耗水量分析[J]. 地理学报, 2015, 70(3): 501-508. |