地理学报 ›› 2020, Vol. 75 ›› Issue (1): 82-97.doi: 10.11821/dlxb202001007
范科科1,2,3, 张强1,2,3(), 孙鹏4, 宋长青1,2,3, 余慧倩1,2,3, 朱秀迪1,2,3, 申泽西1,2,3
收稿日期:
2018-05-07
修回日期:
2019-11-20
出版日期:
2020-01-25
发布日期:
2020-03-25
作者简介:
范科科(1995-), 男, 河南驻马店人, 博士生, 中国地理学会会员(S110011171A), 主要从事生态水文和遥感水文等方面研究。E-mail: fankk95@hotmail.com
基金资助:
FAN Keke1,2,3, ZHANG Qiang1,2,3(), SUN Peng4, SONG Changqing1,2,3, YU Huiqian1,2,3, ZHU Xiudi1,2,3, SHEN Zexi1,2,3
Received:
2018-05-07
Revised:
2019-11-20
Published:
2020-01-25
Online:
2020-03-25
Supported by:
摘要:
青藏高原为全球气候变化最为敏感的区域之一,探讨该地区土壤水分变化对近地面气温的影响将为青藏高原水汽循环研究及该地区对周边气候与环境的影响研究提供重要理论支撑。利用NCEP-CFSR数据集,基于土壤水分对近地面气温的影响机理,揭示了青藏高原不同季节、不同植被分区下土壤水分时空分异规律、土壤水分与蒸发率的响应与耦合状态及土壤水分通过蒸散发过程对近地面气温的影响。结果表明:① 不同季节下青藏高原土壤水分空间分布基本一致,除西北地区和喜马拉雅山脉外,整体呈现由东南向西北递减趋势,青藏高原地区存在干旱区变湿,湿润区变干的空间特征;② 青藏高原大部分区域土壤水分处于干湿过渡状态,其中青藏高原南部和东南部地区全年处于干湿过渡状态,而柴达木盆地几乎全年处于干旱状态;③ 近地面气温对土壤水分的响应在冬季最弱,在夏季最强且空间差异较小,其中在冬、春、夏季为负反馈,另外不同植被覆盖区近地面气温对土壤水分的敏感性差异很大。此项研究对于进一步探讨青藏高原地区陆气耦合状态及变化环境下的区域水汽循环及其效应具有重要理论意义。
范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97.
FAN Keke, ZHANG Qiang, SUN Peng, SONG Changqing, YU Huiqian, ZHU Xiudi, SHEN Zexi. Effect of soil moisture variation on near-surface air temperature over the Tibetan Plateau[J]. Acta Geographica Sinica, 2020, 75(1): 82-97.
[1] | Schwingshackl C, Hirschi M, Seneviratne S I . Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. Journal of Climate, 2017,30(18):7105-7124. |
[2] | Dirmeyer P A . The terrestrial segment of soil moisture-climate coupling. Geophysical Research Letters, 2011, 38(16): 2011GL048268. |
[3] | Zhang Renhe, Liu Li, Zuo Zhiyan . Variations of soil moisture over China and their influences on Chinese climate. Chinese Journal of Nature, 2016,38(5):313-319. |
[ 张人禾, 刘栗, 左志燕 . 中国土壤水分的变异及其对中国气候的影响. 自然杂志, 2016,38(5):313-319.] | |
[4] | Climate Research Committee, National Research Council. GOALS (Global Ocean-Atmosphere-Land System) for Predicting Seasonal-to-Interannual Climate: A Program of Observation, Modeling, and Analysis. Washington: National Academies Press, 1994. |
[5] | Koster R D, Dirmeyer P A, Guo Z , et al. Regions of strong coupling between soil moisture and precipitation. Science, 2004,305(5687):1138-1140. |
[6] | Seneviratne S I, Luthi D, Litschi M , et al. Land-atmosphere coupling and climate change in Europe. Nature, 2006,443(7108):205-209. |
[7] | Orth R, Seneviratne S I . Variability of soil moisture and sea surface temperatures similarly important for warm-season land climate in the Community Earth System Model. Journal of Climate, 2017,30(6):2141-2162. |
[8] | Seneviratne S I, Corti T, Davin E L , et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 2010,99(3/4):125-161. |
[9] | Koster R D, Guo Z, Dirmeyer P A , et al. GLACE: The global land-atmosphere coupling experiment. Part I: Overview. Journal of Hydrometeorology, 2006,7(4):590-610. |
[10] | Koster R D, Mahanama S P P, Yamada T J , et al. The second phase of the global land-atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. Journal of Hydrometeorology, 2011,12(5):805-822. |
[11] | Chahine M T . The hydrological cycle and its influence on climate. Nature, 1992,359(6394):373-380. |
[12] | Wu L, Zhang J . Asymmetric effects of soil moisture on mean daily maximum and minimum temperatures over eastern China. Meteorology and Atmospheric Physics, 2013,122(3/4):199-213. |
[13] | Santanello J J A, Peters-Lidard C D, Kumar S V , et al. A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales. Journal of Hydrometeorology, 2009,10(3):577-599. |
[14] | Lorenz R, Jaeger E B, Seneviratne S I . Persistence of heat waves and its link to soil moisture memory. Geophysical Research Letters, 2010,37(9):384-397. |
[15] | Zampieri M, D'Andrea F, Vautard R , et al. Hot European summers and the role of soil moisture in the propagation of mediterranean drought. Journal of Climate, 2009,22(18):4747-4758. |
[16] | Hirschi M, Seneviratne S I, Alexandrov V , et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 2011,4(1):17-21. |
[17] | Mueller B, Seneviratne S I . Hot days induced by precipitation deficits at the global scale. Proceedings of The National Academy of Sciences, 2012,109(31):12398-12403. |
[18] | Ruosteenoja K, Markkanen T, Venäläinen A , et al. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 2018,50(3/4):1177-1192. |
[19] | Hauser M, Orth R, Seneviratne S I . Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophysical Research Letters, 2016,43(6):2819-2826. |
[20] | Seneviratne S I, Wilhelm M, Stanelle T , et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophysical Research Letters, 2013,40(19):5212-5217. |
[21] | Seneviratne S I, Donat M G, Pitman A J , et al. Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 2016,529(7587):477-483. |
[22] | Douville H, Colin J, Krug E , et al. Midlatitude daily summer temperatures reshaped by soil moisture under climate change. Geophysical Research Letters, 2016,43(2):812-818. |
[23] | Lorenz R, Argueeso D, Donat M G , et al. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres, 2016,121(2):607-623. |
[24] | Gallego-Elvira B, Taylor C M, Harris P P , et al. Global observational diagnosis of soil moisture control on the land surface energy balance. Geophysical Research Letters, 2016,43(6):2623-2631. |
[25] | Miralles D G, Teuling A J, Van Heerwaarden C C , et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nature Geoscience, 2014,7(5):345-349. |
[26] | Dirmeyer P A . Trends in land-atmosphere interactions from CMIP5 simulations. Journal of Hydrometeorology, 2013,14(3):829-849. |
[27] | Badgley G, Fisher J B, Carlos Jiménez , et al. On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. Journal of Hydrometeorology, 2015,16(4):1449-1455. |
[28] | Mueller B, Seneviratne S I . Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophysical Research Letters, 2014,41(1):128-134. |
[29] | Fan Keke, Zhang Qiang, Sun Peng , et al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau. Acta Geographica Sinica, 2019,74(3):520-533. |
[ 范科科, 张强, 孙鹏 , 等. 青藏高原地表土壤水变化、影响因子及未来预估. 地理学报, 2019,74(3):520-533.] | |
[30] | Zeng J, Li Z, Chen Q , et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 2015,163:91-110. |
[31] | Bi H, Ma J, Zheng W , et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 2016,121(6):2658-2678. |
[32] | Wan Guoning, Yang Meixue, Wang Xuejia , et al. Variation in soil moisture at different time scales of BJ site on the central Tibetan Plateau. Chinese Journal of Soil Science, 2012,43(2):286-293. |
[ 万国宁, 杨梅学, 王学佳 , 等. 青藏高原中部BJ站土壤湿度不同时间尺度的变化. 土壤通报, 2012,43(2):286-293.] | |
[33] | Yang Jian, Ma Yaoming . Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau. Journal of Glaciology and Geocryology, 2012,34(4):813-820. |
[ 杨健, 马耀明 . 青藏高原典型下垫面的土壤温湿特征. 冰川冻土, 2012,34(4):813-820.] | |
[34] | Shi Xiaokang, Wen Jun, Wang Lei , et al. Application of AMSR-E brightness temperature data in observation and simulation of soil moisture variation over Northeast Plateau. Plateau Meteorology, 2010,29(3):545-553. |
[ 史小康, 文军, 王磊 , 等. AMSR-E卫星亮度温度数据在高原东北部土壤湿度观测和模拟中的应用. 高原气象, 2010,29(3):545-553.] | |
[35] | Fan Keke, Zhang Qiang, Shi Peijun , et al. Evaluation of remote sensing and reanalysis soil moisture products on the Tibetan Plateau. Acta Geographica Sinica, 2018,73(9):1778-1791. |
[ 范科科, 张强, 史培军 , 等. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估. 地理学报, 2018,73(9):1778-1791.] | |
[36] | Editorial Board of the Vegetation Atlas of China, Chinese Academy of Sciences. Vegetation Atlas of China. Beijing: Science Press, 2001. |
[ 中国科学院中国植被图编辑委员会. 中国植被图集, 北京: 科学出版社, 2001.] | |
[37] | Bao X, Zhang F . Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal of Climate, 2013,26(1):206-214. |
[38] | Hodges K I, Lee R W, Bengtsson L . A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. Journal of Climate. 2011,24(18):4888-4906. |
[39] | Saha S, Moorthi S, Pan H , et al. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 2010,91(8):1015-1057. |
[40] | Sun Rui, Liu Changming . A review on research of land surface water and heat fluxes. Chinese Journal of Applied Ecology, 2003,14(3):434-438. |
[ 孙睿, 刘昌明 . 地表水热通量研究进展. 应用生态学报, 2003,14(3):434-438.] | |
[41] | Lai Xin, Wen Jun, Fan Guangzhou , et al. Improvement of soil moisture simulation over Chinese main land by LDAS-IAP/CAS-1.0. Plateau Meteorology, 2017,36(3):776-787. |
[ 赖欣, 文军, 范广洲 , 等. 基于陆面数据同化系统改进中国区域土壤水分的模拟研究. 高原气象, 2017,36(3):776-787. | |
[42] | Koster R D, Schubert S D, Suarez M J . Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. Journal of Climate, 2009,22(12):3331-3341. |
[43] | Shi Lei, Du Jun, Zhou Kanshe , et al. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012. Journal of Glaciology and Geocryology, 2016,38(5):1241-1248. |
[ 石磊, 杜军, 周刊社 , 等. 1980—2012年青藏高原土壤湿度时空演变特征. 冰川冻土, 2016,38(5):1241-1248.] | |
[44] | Wang Lei, Wen Jun, Wei Zhigang , et al. Soil moisture over the west of Northeast China and its response to climate. Plateau Meteorology, 2008,27(6):1257-1266. |
[ 王磊, 文军, 韦志刚 , 等. 中国西北区西部土壤湿度及其气候响应. 高原气象, 2008,27(6):1257-1266.] | |
[45] | Ma Zhuguo, Wei Helin, Fu Congbin . Relationship between regional soil moisture variation and climatic variability over east China. Acta Meteorologica Sinica, 2000,58(3):278-287. |
[ 马柱国, 魏和林, 符淙斌 . 中国东部区域土壤湿度的变化及其与气候变率的关系. 气象学报, 2000,58(3):278-287.] |
[1] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[2] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[3] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[4] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[5] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[6] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[7] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[8] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[9] | 戚伟, 刘盛和, 周亮. 青藏高原人口地域分异规律及“胡焕庸线”思想应用[J]. 地理学报, 2020, 75(2): 255-267. |
[10] | 高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81. |
[11] | 郭超,蒙红卫,马玉贞,李丹丹,胡彩莉,刘杰瑞,雒聪文,王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J]. 地理学报, 2019, 74(7): 1345-1362. |
[12] | 高兴川,曹小曙,李涛,吕敏娟. 1976-2016年青藏高原地区通达性空间格局演变[J]. 地理学报, 2019, 74(6): 1190-1204. |
[13] | 田原,余成群,查欣洁,高星,于明寨. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因[J]. 地理学报, 2019, 74(5): 975-991. |
[14] | 范科科, 张强, 孙鹏, 宋长青, 朱秀迪, 余慧倩, 申泽西. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报, 2019, 74(3): 520-533. |
[15] | 范科科,张强,史培军,孙鹏,余慧倩. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018, 73(9): 1778-1791. |