地理学报 ›› 2019, Vol. 74 ›› Issue (9): 1789-1802.doi: 10.11821/dlxb201909007
敖翔宇1,2,4,谈建国3,4,支星5,过霁冰6,陆一闻1,刘冬韡1()
收稿日期:
2018-04-10
修回日期:
2019-07-18
出版日期:
2019-09-25
发布日期:
2019-09-25
通讯作者:
刘冬韡
作者简介:
敖翔宇(1988-), 女, 江西萍乡人, 博士生, 工程师, 研究方向为城市气象。E-mail: aoxy@simets.cn
基金资助:
AO Xiangyu1,2,4,TAN Jianguo3,4,ZHI Xing5,GUO Jibing6,LU Yiwen1,LIU Dongwei1()
Received:
2018-04-10
Revised:
2019-07-18
Online:
2019-09-25
Published:
2019-09-25
Contact:
LIU Dongwei
Supported by:
摘要:
在全球变暖的背景下,热浪变得更加频繁。城市地区由于城市热岛效应在热浪事件中承受更大的风险。然而城市热岛与热浪之间的相互作用还少有研究。利用2016-2017年两个夏季(6-8月)上海城、郊气象站逐时气温、风速、相对湿度资料、城区徐家汇和郊区奉贤涡动相关通量观测资料对比分析了热浪和非热浪期间城市热岛强度的差异,并利用一个平流扩散解析模型揭示了城市热岛与热浪相互作用的物理机制。结果表明,热浪期间的城市热岛强度相比非热浪期间明显增强,且白天增强大于夜间,显示出城市热岛与热浪之间的协同效应。热浪期间城、郊相对湿度比值相对非热浪期间明显减小,表明热浪期间城区地表相对郊区变得更干,从而抑制了蒸发作用,加剧了城市热岛强度;平均风速也明显减小,平流降温效应减弱,对城市热岛强度起正反馈效应。热浪期间城区净辐射通量的增加大于郊区,使城区获得更大地表辐射输入;由于城区更少的植被覆盖和更多的不透水下垫面,热浪期间城区潜热通量略有降低,而郊区明显增加;城区感热通量增幅则大于郊区,这种感热和潜热通量分配的改变也加剧了城市热岛强度。本研究对城市如何应对加剧的热风险具有重要的科学指示意义。
敖翔宇, 谈建国, 支星, 过霁冰, 陆一闻, 刘冬韡. 上海城市热岛与热浪协同作用及其影响因子[J]. 地理学报, 2019, 74(9): 1789-1802.
AO Xiangyu, TAN Jianguo, ZHI Xing, GUO Jibing, LU Yiwen, LIU Dongwei. Synergistic interaction between urban heat island and heat waves and its impact factors in Shanghai[J]. Acta Geographica Sinica, 2019, 74(9): 1789-1802.
[1] | Russo S, Dosio A, Graversen R G , et al. Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research Atmospheres, 2015,119(22):12500-12512. |
[2] | Mora C, Dousset B, Caldwell I R , et al. Global risk of deadly heat. Nature Climate Change, 2017,7:501-506. |
[3] | Tan Jianguo, Huang Jiaxin . The impacts of heat waves on human health and its research methods. Climatic and Environmental Research, 2004,9(4):680-686. |
[ 谈建国, 黄家鑫 . 热浪对人体健康的影响及其研究方法. 气候与环境研究, 2004,9(4):680-686.] | |
[4] | Chen Qian, Ding Mingjun, Yang Xuchao , et al. Spatially explicit assessment of heat health risks using multi-source data: A case study of the Yangtze River Delta region, China. Journal of Geo-information Science, 2017,19(11):1475-1484. |
[ 陈倩, 丁明军, 杨续超 , 等. 长江三角洲地区高温热浪人群健康风险评价. 地球信息科学学报, 2017,19(11):1475-1484.] | |
[5] | Zaitchik B F, Macalady A K, Bonneau L R , et al. Europe's 2003 heat wave: A satellite view of impacts and land-atmosphere feedbacks. International Journal of Climatology, 2010,26(6):743-769. |
[6] | Knutson T R, Zeng F R, Wittenberg A T . The extreme March-May 2012 warm anomaly over the eastern United States: global context and multimodel trend analysis. Bulletin of the American Meteorological Society, 2013,94(9):S13-S17. |
[7] | Xia J, Tu K, Yan Z , et al. The super-heat wave in eastern China during July-August 2013: A perspective of climate change. International Journal of Climatology, 2016,36(3):1291-1298. |
[8] | Ma S, Zhou T, Stone D , et al. Attribution of the July-August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions. Environmental Research Letters, 2017,12:054020. |
[9] | Chen Min, Geng Fuhai, Ma Leiming , et al. Analyses on the heat wave events in Shanghai in recent 138 years. Plateau Meteorology, 2013,32(2):597-607. |
[ 陈敏, 耿福海, 马雷鸣 , 等. 近138年上海地区高温热浪事件分析. 高原气象, 2013,32(2):597-607.] | |
[10] | Cao Chang, Li Xuhui, Zhang Mi , et al. Correlation analysis of the urban heat island effect and its impact factors in China. Environmental Science, 2017,38(10):3987-3997. |
[ 曹畅, 李旭辉, 张弥 , 等. 中国城市热岛时空特征及其影响因子的分析. 环境科学, 2017,38(10):3987-3997.] | |
[11] | Meehl G A, Tebaldi C . More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 2004,305:994-997. |
[12] | Robinson P J . On the definition of a heat wave. Journal of Applied Meteorology, 2001,40:762-775. |
[13] | Matsumura S, Sugimoto S, Sato T . Recent intensification of the Western Pacific subtropical high associated with the East Asian summer monsoon. Journal of Climate, 2015,28(4):2873-2883. |
[14] | He C, Zhou T, Lin A , et al. Enhanced or weakened western north pacific subtropical high under global warming? Scientific Reports, 2015,5:16771. |
[15] | Peng Baofa, Shi Yishao, Wang Hefeng , et al. The impacting mechanism and laws of function of urban heat islands effect: A case study of Shanghai. Acta Geographica Sinica, 2013,68(11):1461-1471. |
[ 彭保发, 石忆邵, 王贺封 , 等. 城市热岛效应的影响机理及其作用规律: 以上海市为例. 地理学报, 2013,68(11):1461-1471.] | |
[16] | Oke T R . The energetic basis of the urban heat-Island. Quarterly Journal of the Royal Meteorological Society, 1982,108:1-24. |
[17] | Grimmond S . Urbanization and global environmental change: Local effects of urban warming. Geographical Journal, 2007,173:83-88. |
[18] | Liu Yue, Shintaro Goto, Zhuang Dafang , et al. Urban surface heat flux inversion based on infrared remote sensing and the relationship with land cover. Acta Geographica Sinica, 2012,67(1):101-112. |
[ 刘越, Shintaro G, 庄大方 , 等. 城市地表热通量遥感反演及与下垫面关系分析. 地理学报, 2012,67(1):101-112.] | |
[19] | Roth M . Review of atmospheric turbulence over cities. Quarterly Journal of the Royal Meteorological Society, 2000,126:941-990. |
[20] | Miao S, Chen F, Lemone M A , et al. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. Journal of Applied Meteorology and Climatology, 2009,48(3):484-501. |
[21] | Zhao L, Lee X, Smith R B , et al. Strong contributions of local background climate to urban heat islands. Nature, 2014,511:216-219. |
[22] | Zhou D, Zhao S, Zhang L , et al. The footprint of urban heat island effect in China. Scientific Reports, 2015,5:11160. |
[23] | Li D, Bou-Zeid E . 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 2013,52:2051-2064. |
[24] | Li D, Sun T, Liu M , et al. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 2015,10:054009. |
[25] | Li D, Sun T, Liu M , et al. Changes in wind speed under heat waves enhance urban heat Islands in the Beijing metropolitan area. Journal of Applied Meteorology and Climatology, 2016,55:2369-2375. |
[26] | Founda D, Santamouris M . Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 2017,7(1):10973. |
[27] | Sun T, Kotthaus S, Li D , et al. Attribution and mitigation of heat wave-induced urban heat storage change. Environmental Research Letters, 2017,12:114007. |
[28] | Scott A A, Waugh D W, Zaitchik B F . Reduced urban heat island intensity under warmer conditions. Environmental Research Letters, 2018,13:064003. |
[29] | Yue Wenze, Xu Jianhua . Impact of human activities on urban thermal environment in Shanghai. Acta Geographica Sinica, 2008,63(3):247-256. |
[ 岳文泽, 徐建华 . 上海市人类活动对热环境的影响. 地理学报, 2008,63(3):247-256.] | |
[30] | Miao Junfeng . An overview of numerical studies of interactions of urban heat island and sea breeze circulations. Transactions of Atmospheric Sciences, 2014,37(4):521-528. |
[ 苗峻峰 . 城市热岛和海风环流相互作用的数值模拟研究进展. 大气科学学报, 2014,37(4):521-528.] | |
[31] | Gu Wen, Zhang Jing, Tan Jianguo , et al. Characteristics and circulation background of Shanghai summer sea breeze front and its induced convection. Journal of Tropical Meteorology, 2017,33(5):644-653. |
[ 顾问, 张晶, 谈建国 , 等. 上海夏季海风锋及其触发对流的时空分布和环流背景分析. 热带气象学报, 2017,33(5):644-653.] | |
[32] | Tan J G, Zheng Y, Tang X , et al. The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 2010,54:75-84. |
[33] | Kormann R, Meixner F X . An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology. 2001,99:207-224. |
[34] | Zhu Mingjia, Zhao Qianyi, Liu Shaomin , et al. Analysis of the characteristics of turbulent flux and its footprint climatology at an agricultural site. Advances in Earth Science, 2013,28(12):1313-1325. |
[ 朱明佳, 赵谦益, 刘绍民 , 等. 农田下垫面观测通量的变化特征及其气候学足迹分析. 地球科学进展, 2013,28(12):1313-1325.] | |
[35] | Kotthaus S, Grimmond C S B . Energy exchange in a dense urban environment (Part II): Impact of spatial heterogeneity of the surface. Urban Climate, 2014,10:281-307. |
[36] | Zou J, Liu G, Sun J , et al. The momentum flux gradient relations derived from field measurements in the urban roughness sublayer in three cities in China. Journal of Geophysical Research Atmospheres, 2016,120:10797-10809. |
[37] | Ao X Y, Grimmond C S B, Liu D W , et al. Radiation fluxes in a business district of Shanghai, China. Journal of Applied Meteorology and Climatology, 2016,55(11):2451-2468. |
[38] | Ao X Y, Grimmond C S B, Chang Y Y , et al. Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. International Journal of Climatology, 2016,36(14):4608-4624. |
[39] | Ramamurthy P, Bou-Zeid E . Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research Atmospheres, 2017,122:168-178. |
[40] | Zhao L, Oppenheimer M, Zhu Q , et al. Interactions between urban heat islands and heat waves. Environmental Reserach Letters, 2018,13:034003. |
[1] | 冯章献,王士君,金珊合,杨俊. 长春市城市形态及风环境对地表温度的影响[J]. 地理学报, 2019, 74(5): 902-911. |
[2] | 谢志清, 杜银, 曾燕 , 施雅风, 武金岗. 长江三角洲城市带扩展对区域温度变化的影响[J]. 地理学报, 2007, 62(7): 717-727. |
[3] | 李彦,王勤学,马健,渡边正孝,张小雷. 盐生荒漠地表水、热与CO2输送 的实验研究[J]. 地理学报, 2004, 59(1): 33-39. |
[4] | 张永强,沈彦俊,刘昌明,于强,孙宏勇,贾金生,唐常源,A.Kondoh. 华北平原典型农田水、热与CO2通量的测定[J]. 地理学报, 2002, 57(3): 335-344. |
[5] | 陈沈斌, 潘莉卿. 城市化对北京平均气温的影响[J]. 地理学报, 1997, 52(1): 27-36. |
[6] | 刘树华, 张露琛, 朱廷曜, 孔繁智. 东北林网地区廓线分布和湍流输送特征[J]. 地理学报, 1994, 49(2): 167-173. |
[7] | 李子华, 唐斌, 任启福. 重庆市区冬季热岛和湿岛效应的研究 [J]. 地理学报, 1993, 48(4): 358-366. |
[8] | 周淑贞, 郑景春 . 上海城市太阳辐射与热岛强度 [J]. 地理学报, 1991, 46(2): 207-212. |
[9] | 边海, 铁学熙. 天津市夜间城市热岛的数值模拟[J]. 地理学报, 1988, 43(2): 150-158. |
[10] | 沈建柱. 我国城市气候学研究进展[J]. 地理学报, 1986, 41(3): 281-285. |
[11] | 周淑贞, 张超. 上海城市热岛效应[J]. 地理学报, 1982, 37(4): 372-382. |
[12] | 田国良. 呼伦贝尔草原的太阳分光辐射能和光合潜力[J]. 地理学报, 1980, 35(1): 76-82. |