Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (12): 2297-2314     DOI: 10.11821/dlxb201812003
  城市与区域发展 本期目录 | 过刊浏览 | 高级检索 |
粤港澳大湾区城市群知识多中心的演化过程与机理
马海涛1(),黄晓东2,李迎成3()
1. 中国科学院地理科学与资源研究所 中国科学院区域可持续发展分析与模拟重点实验室,北京 100101
2. 河南大学黄河文明与可持续发展研究中心,开封 475001
3. 麻省理工学院城市研究与规划系,美国 马萨诸塞州 02139
The evolution and mechanisms of megalopolitan knowledge polycentricity of Guangdong-Hong Kong-Macao Greater Bay Area
MA Haitao1(),HUANG Xiaodong2,LI Yingcheng3()
1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng 475001, Henan, China
3. Massachusetts Institute of Technology, Cambridge, MA 02139, USA
全文: PDF (5379 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

基于1990-2016年“Web of Science”核心合集所收录的科研论文合著数据,借助基尼系数测度属性和功能多中心性的方法,对粤港澳大湾区城市群的知识多中心性及其知识网络的演化进行了研究。结果发现:① 伴随着粤港澳大湾区城市群知识生产总量的持续增长,其多中心性程度呈现出阶段性、阶梯式提升的特征,分别经历了波动、增长和分化的发展阶段,港澳回归后的2000-2010年间是多中心性快速增长的重要阶段。② 粤港澳大湾区城市群在区域、国家和全球尺度上的功能多中心性程度随着尺度增加逐级递减,进一步证实了功能多中心性的尺度规律性;而且发现了多中心在演化中的尺度敏感性,全球尺度上的多中心性会存在不确定的峰值,而区域尺度上的多中心性可能会持续增加。③ 城市群多中心的演化是受制度接近、地理接近和等级接近影响,在研究人员移动、科研单位联动和政府政策推动及其行动主体间的相互作用下实现的,多中心程度的增加有助于推动粤港澳大湾区城市群构建科研协同创新共同体。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马海涛
黄晓东
李迎成
关键词 多中心性城市群粤港澳大湾区知识城市科学合作协同创新一国两制 
Abstract

The concept of megalopolis, since its original inception six decades ago, has inspired many new terms that mainly describe large-scale urbanized forms such as megaregions and polycentric urban regions. However, recent studies have increasingly focused on the two key functions that megalopolises act as an incubator of new ideas and trends and as a hub that articulates knowledge exchange at the megalopolitan, national, and global scales. While the recent studies have mainly analyzed the functional aspects of megalopolis based on China's Yangtze River Delta region, this paper investigates the evolving process and mechanisms of knowledge collaboration within and beyond Guangdong-Hong Kong-Macao Greater Bay Area (GBA) - one of the most promising and vibrant megalopolises in China. In addition, the GBA megalopolis is unique because it contains Hong Kong and Macao, which have a different political system from China's mainland. Drawing upon a dataset of publications that were indexed in Web of Science Core Collection during the 1990-2016 period, this paper uses the Gini coefficient to measure the degree of knowledge polycentricity of the GBA megalopolis. Here, knowledge polycentricity is further classified into attribute polycentricity of knowledge production and functional polycentricity of knowledge collaboration within and beyond the GBA megalopolis. Whereas the attribute polycentricity refers to the distribution inequality of the total publications of GBA cities, the functional polycentricity represents the distribution inequality of GBA cities' knowledge collaboration at different geographical scales. Our empirical results show: (1) knowledge production of the GBA megalopolis as a whole has experienced a robust and continuous growth. The degrees of both attribute polycentricity and functional polycentricity have also been on the increase in general, although there are some fluctuations in early years and some deviations in recent years. During the ten years after Hong Kong and Macao returned to China (the 2000-2010 period), the degree of knowledge polycentricity of the GBA megalopolis especially enjoyed the fastest rise; (2) The degree of functional polycentricity decreased with the expansion in the geographical scales at which it is measured, confirming the findings of previous studies that functional polycentricity is scale-dependent. Moreover, we find that the degree of functional polycentricity becomes more fluctuated at the global scale while it tends to increase continuously at the megalopolitan scale; (3) The evolving process of knowledge polycentricity of the GBA megalopolis is influenced by institutional proximity, geographical proximity and status proximity between cities. Specifically, the mobility of researchers, the collaboration of universities and research institutes, and the coordination of local governments are three major forces promoting the evolution of knowledge polycentricity of the GBA megalopolis. Overall, the increasing knowledge polycentricity would be of significance for the GBA megalopolis to form a knowledge-driven region of collective collaboration.

Key wordspolycentricity    megalopolis    Guangdong-Hong Kong-Macao Greater Bay Area    knowledge city    scientific cooperation    collaborative innovation    one country and two systems
收稿日期: 2018-05-15      出版日期: 2018-12-14
基金资助:国家自然科学基金项目(41571151, 41590842, 71433008)
引用本文:   
马海涛, 黄晓东, 李迎成 . 粤港澳大湾区城市群知识多中心的演化过程与机理[J]. 地理学报, 2018, 73(12): 2297-2314.
MA Haitao, HUANG Xiaodong, LI Yingcheng . The evolution and mechanisms of megalopolitan knowledge polycentricity of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Geographica Sinica, 2018, 73(12): 2297-2314.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201812003      或      http://www.geog.com.cn/CN/Y2018/V73/I12/2297
Fig. 1  粤港澳大湾区城市群范围示意图
Fig. 2  1990-2016年粤港澳大湾区城市群国际期刊论文发表总量的增长演变
核心城市 非核心城市
内地 广州,深圳 佛山,东莞,惠州,肇庆,珠海,中山,江门
特别行政区 香港 澳门
Tab. 1  “一国两制”情境下GBA的核心与非核心城市划分
年份 发文量 城市群尺度 国家尺度 全球尺度
篇数 占比(%) 篇数 占比(%) 篇数 占比(%) 篇数 占比(%)
1990 1350 99.85 34 100.00 62 100.00 154 98.09
1995 3133 99.15 18 100.00 273 97.50 485 96.61
2000 8742 99.14 306 94.44 1687 99.00 1330 99.11
2005 14628 97.23 817 94.12 4043 97.87 2521 98.40
2010 25895 95.58 2828 89.95 10163 96.12 6764 98.13
2015 46573 92.09 10022 83.95 26542 92.89 26783 96.83
2016 51928 91.31 11680 82.52 30215 91.58 31115 95.85
Tab. 2  1990-2016年前三位城市(广州、香港、深圳)的发文量与合作论文量及占城市群总量的比例
Fig. 3  1990-2016年GBA功能多中心和属性多中心比较
Fig. 4  1990-2016年GBA所有城市国际刊物发文量的结构演变
Fig. 5  1990-2016年各城市在不同尺度的合作发文量
Fig. 6  GBA城市在不同尺度合作中的合作论文增长
Fig. 7  不同时段GBA城市合作论文的分尺度比较
Fig. 8  GBA城市与不同地理尺度城市的知识合作网络演化图
注:图例中知识联系用城市间论文合作量(篇)反映;节点中心度用城市对外论文合作量(篇)反映,即一个城市与文中所选其他191个城市的合作论文总量;以上数据均为3年平均值。
Fig. 9  GBA多中心演化机制示意图
[1] Fang Chuanglin, Wang Zhenbo, Ma Haitao.The theoretical cognition of the development law of China's urban agglomeration and academic contribution. Acta Geographica Sinica, 2018, 73(4): 651-665.
[方创琳, 王振波, 马海涛. 中国城市群形成发育规律的理论认知与地理学贡献. 地理学报, 2018, 73(4): 651-665.]
[2] Gottmann J.Megalopolis: The Urbanized Northeastern Seaboard of the United States. New York: The Twentieth Century Fund, 1961.http://www.jstor.org/stable/1979397
DOI: 10.2307/142511     
[3] Gottmann J.Megalopolitan systems around the world. Ekistics, 1976, 243(2): 109-113.http://www.popline.org/node/452364
[4] Fischer M, Revilla D J, Snickars F, et al.Metropolitan Innovation Systems: Theory and Evidence from Three Metropolitan Regions in Europe. Berlin: Springer, 2001.
[5] Diez J R.Metropolitan innovation systems: A comparison between Barcelona, Stockholm, and Vienna. International Regional Science Review, 2002, 25(1): 63-85.http://journals.sagepub.com/doi/10.1177/016001702762039385
[6] Yao Shimou, Zhu Yingming, Chen Zhenguang.Urban Agglomerations in China. Hefei: University of Science and Technology of China Press, 2001.
[姚士谋, 朱英明, 陈振光. 中国城市群.合肥: 中国科学技术大学出版社, 2001.]
[7] Lu Tianzan, Wu Zhiqiang, Huang Liang.Social network, spatial structure and evolution of the Bosnywash megalopolis innovative cities cluster. Urban Planning International, 2016, 31(2): 51-60.
[陆天赞, 吴志强, 黄亮. 美国东北部城市群创新城市群落的社会网络关系、空间组织特征及演进. 国际城市规划, 2016, 31(2): 51-60.]http://d.wanfangdata.com.cn/Periodical/gwcsgh201602009
[8] Davoudi S.Polycentricity in European spatial planning from an analytical tool to a normative agenda. European Planning Studies, 2003, 11(8): 979-999.http://www.tandfonline.com/doi/abs/10.1080/0965431032000146169
[9] Meijers E.Measuring polycentricity and its promises. European Planning Studies, 2008, 16(9): 1313-1323.http://www.tandfonline.com/doi/abs/10.1080/09654310802401805
[10] Burger M J, van der Knaap B, Wall R S. Polycentricity and the multiplexity of urban networks. European Planning Studies, 2014, 22(4): 816-840.http://www.tandfonline.com/doi/abs/10.1080/09654313.2013.771619
[11] Cai Lili, Ma Xueguang, Chen weijin, et al. Characteristics of functional polycentricity of PRD urban region based on passenger traffic flow. Economic Geography, 2013, 33(11): 52-57.
[蔡莉丽, 马学广, 陈伟劲, . 基于客运交通流的珠三角城市区域功能多中心特征研究. 经济地理, 2013, 33(11): 52-57.]http://www.cnki.com.cn/Article/CJFDTotal-JJDL201311009.htm
[12] Howard E.Garden Cities of Tomorrow. London: Faber and Faber, 1946.
[13] Geddes P.Cities in Evolution: An Introduction to the Town Planning Movement and to the Study of Civics. London: Williams & Norgate, 1915.http://www.jstor.org/stable/1779702
DOI: 10.2307/207415     
[14] Mumford L.The Culture of Cities. New York: Harcourt Brace, 1938.
[15] Hall P. The World Cities. London: Weidenfield and Nicolson, 1966.
[16] Xu Jiang.Polycentric city-region: Reflections on POLYNET. Urban Planning International, 2008, 23(1): 1-3.
[徐江. 多中心城市群: POLYNET引发的思考. 国际城市规划, 2008, 23(1): 1-3.]
[17] Luo Zhendong, Zhu Chasong.Understanding polycentricity by configuration, function and governance. Urban Planning International, 2008, 23(1): 85-88.
[罗震东, 朱查松. 解读多中心: 形态、功能与治理. 国际城市规划, 2008, 23(1): 85-88.]http://d.wanfangdata.com.cn/Periodical/gwcsgh200801012
[18] Zhao M, Derudder B, Huang J.Examining the transition processes in the Pearl River Delta polycentric mega-city region through the lens of corporate networks. Cities, 2017, 60: 147-155.https://linkinghub.elsevier.com/retrieve/pii/S0264275116305054
[19] Zhao Miaoxi, Li Zhifeng, Zhong Ye, et al.Polycentric network topology of urban agglomerations in China. Progress in Geography, 2016, 35(3): 376-388.
[赵渺希, 黎智枫, 钟烨, . 中国城市群多中心网络的拓扑结构. 地理科学进展, 2016, 35(3): 376-388.]http://d.wanfangdata.com.cn/Periodical/dlkxjz201603012
[20] Liu X J, Derudder B, Wu K.Measuring polycentric urban development in China: An intercity transportation network perspective. Regional Studies, 2016, 50(8): 1302-1315.http://www.tandfonline.com/doi/full/10.1080/00343404.2015.1004535
[21] Li Y C, Phelps N.Knowledge polycentricity and the evolving Yangtze River Delta megalopolis. Regional Studies, 2017, 51(7): 1035-1047.https://www.tandfonline.com/doi/full/10.1080/00343404.2016.1240868
[22] Li Y C, Phelps N.Megalopolis unbound: Knowledge collaboration and functional polycentricity within and beyond the Yangtze River Delta Region in China, 2014. Urban Studies, 2018, 55(2): 443-460.http://journals.sagepub.com/doi/10.1177/0042098016656971
[23] Li Lixun.Thinking on the Guangdong-Hong Kong-Macao Greater Bay Area. Tropical Geography, 2017, 37(6): 757-761.
[李立勋. 关于“粤港澳大湾区”的若干思考. 热带地理, 2017, 37(6): 757-761.]http://www.cqvip.com/QK/95558X/201706/673963452.html
[24] Yang C.Multilevel governance in the cross-boundary region of Hong Kong-Pearl River Delta, China. Environment and Planning A, 2005, 37(12): 2147-2168.http://journals.sagepub.com/doi/10.1068/a37230
DOI: 10.1068/a37230     
[25] Enright M, Chang K M, Scott E, et al.Hong Kong and the Pearl River Delta: The Economic Interaction. Hong Kong: 2022 Foundation, 2003.http://hub.hku.hk/handle/10722/121264
[26] Meyer S, Schiller D, Diez J R.The localization of electronics manufacturing in the Greater Pearl River Delta, China: Do global implants put down local roots? Applied Geography, 2012, 32(1): 119-129.https://linkinghub.elsevier.com/retrieve/pii/S0143622810001694
[27] Yang C, Li S M.Transformation of cross-boundary governance in the Greater Pearl River Delta, China: Contested geopolitics and emerging conflicts. Habitat International, 2013, 40(3): 25-34.https://linkinghub.elsevier.com/retrieve/pii/S0197397513000143
[28] Lin Chusheng.Planning for the development of the city-regions in the Guangdong-Hong Kong-Macao Greater Bay Area: What can and cannot be done. Tropical Geography, 2017, 37(6): 755-756.
[林初昇. “粤港澳大湾区”城市群发展规划之可为与不可为. 热带地理, 2017, 37(6): 755-756.]http://d.wanfangdata.com.cn/Periodical/rddl201706001
[29] Zhou Chunshan, Luo Lijia, Shi Chenyi, et al.Spatio-temporal evolutionary characteristics of the economic development in the Guangdong-Hong Kong-Macao Greater Bay Area and its influencing factors. Tropical Geography, 2017, 37(6): 802-813.
[周春山, 罗利佳, 史晨怡, . 粤港澳大湾区经济发展时空演变特征及其影响因素. 热带地理, 2017, 37(6): 802-813.]http://d.wanfangdata.com.cn/Periodical/rddl201706007
[30] Nonaka I, Toyama R, Konno N.SECI, Ba,leadership: A unified model of dynamic knowledge creation. Long Range Planning, 2000, 33(1): 5-34.http://linkinghub.elsevier.com/retrieve/pii/S0024630199001156
[31] Keeble D, Wilkinson F.Collective learning and knowledge development in the evolution of regional clusters of high technology SMEs in Europe. Regional Studies, 1999, 33(4): 295-303.https://www.tandfonline.com/doi/full/10.1080/00343409950081167
[32] Ma H, Fang C, Pang B, et al.The effect of geographical proximity on scientific cooperation among Chinese cities from 1990 to 2010. Plos One, 2014, 9(11): e11170511.http://www.ncbi.nlm.nih.gov/pubmed/25365449
DOI: 10.1371/journal.pone.0111705      PMID: 4218805     
[33] Ma H, Fang C, Pang B.Structure of Chinese city network as driven by technological knowledge flows. Chinese Geographical Science, 2015, 25(4): 498-510.http://link.springer.com/10.1007/s11769-014-0731-0
[34] Duan Dezhong, Du Debin, Chen Ying, et al.Technology transfer in China's city system: Process, pattern and influencing factors. Acta Geographica Sinica, 2018, 73(4): 738-754.
[段德忠, 杜德斌, 谌颖, . 中国城市创新技术转移格局与影响因素. 地理学报, 2018, 73(4): 738-754.]
[35] Andersson D E, Gunessee S, Matthiessen C W, et al.The geography of Chinese science. Environment & Planning A, 2014, 46(12): 2950-2971.
[36] Ren S, Rousseau R.International visibility of Chinese scientific journals. Scientometrics, 2002, 53(3): 389-405.http://link.springer.com/10.1023/A:1014877130166
[37] Zhou P, Leydesdorff L.The emergence of China as a leading nation in science. Research Policy, 2006, 35(1): 83-104.http://linkinghub.elsevier.com/retrieve/pii/S0048733305001794
[38] Taylor P J, Catalano G, Walker D R F. Measurement of the world city network. Urban Studies, 2002, 39(13): 2367-2376.http://journals.sagepub.com/doi/10.1080/00420980220080011
[39] Matthiessen C W, Schwarz A W, Find S.World cities of scientific knowledge: Systems, networks and potential dynamics - An analysis based on bibliometric indicators. Urban Studies, 2010, 47(9): 1879-1897.http://journals.sagepub.com/doi/10.1177/0042098010372683
[40] Burger M J, Meijers E.Form follows function? Linking morphological and functional polycentricity. Urban Studies, 2012, 49(5): 1127-1149.http://journals.sagepub.com/doi/10.1177/0042098011407095
[41] Zhang X, Kloosterman R C.Connecting the 'workshop of the world': Intra- and extra-service networks of the Pearl River Delta City-Region. Regional Studies, 2016, 50(6): 1069-1081.https://www.tandfonline.com/doi/full/10.1080/00343404.2014.962492
[42] Hall P G, Pain K.The Polycentric Metropolis: Learning from Mega-city Regions in Europe. London: Routledge, 2006.http://www.tandfonline.com/doi/abs/10.1080/01944360802146410
[43] Hanssens H, Derudder B, Van Aelst S, et al.Assessing the functional polycentricity of the mega-city-region of central belgium based on advanced producer service transaction links. Regional Studies, 2014, 48(12): 1939-1953.http://www.tandfonline.com/doi/abs/10.1080/00343404.2012.759650
[44] Shenzhen Education.Work Summary of Shenzhen Education Bureau in 2004. , 2006-09-19.http://www.szeb.edu.cn
[深圳教育. 深圳市教育局2004年工作总结 ., 2006-09-19.]http://www.szeb.edu.cn
[45] Qin Wei. Impression: 17 years Guangdong and Hong Kong joint conference. 21st Century Business Herald, 2014-11-10(009).
[秦伟. 印象: 17年粤港合作联席会议. 21世纪经济报道, 2014-11-10(009).]
[46] Guangzhou Bureau of Statistics. Guangzhou Statistical Yearbook 2017. Beijing: China Statistics Press, 2017.
[广州市统计局. 广州统计年鉴2017.北京: 中国统计出版社, 2017.]
[47] Guangdong Provincial Bureau of Statistics. Guangdong Statistical Yearbook 2017. Beijing: China Statistics Press, 2017.
[广东省统计局. 广东统计年鉴2017.北京: 中国统计出版社, 2017.]
[48] Shenzhen Bureau of Statistics. Shenzhen Statistical Yearbook 2017. Beijing: China Statistics Press, 2017.
[深圳市统计局. 深圳统计年鉴2017.北京: 中国统计出版社, 2017.]
[49] Jian Zhaoquan, Zheng Xueyun.Filling the innovative "Middle Fault": A case study of ITRI of South China University of Technology. Journal of Industrial Engineering and Engineering Management, 2011, 25(4): 178-185.
[简兆权, 郑雪云. 弥补创新的中间断层: 以华南理工大学工研院为例. 管理工程学报, 2011, 25(4): 178-185.]http://www.cnki.com.cn/Article/CJFDTotal-GLGU201104025.htm
[50] Hu Gang, Luo Jianping.The main obstacle and countermeasure of scientific and technological cooperation between universities in Guangdong and Hong Kong: The perspective of Shenzhen research institute of universities in Hong Kong. Chinese University Science & Technology, 2016(8): 37-39.
[胡罡, 罗剑平. 粤港高校科技合作的主要障碍及对策: 香港高校深圳研究院的视角. 中国高校科技, 2016(8): 37-39.]
[51] Liu Chengliang, Gui Qinchang, Duan Dezhong, et al.Structural heterogeneity and proximity mechanism of global scientific collaboration network based on co-authored papers. Acta Geographica Sinica, 2017, 72(4): 737-752.
[刘承良, 桂钦昌, 段德忠, . 全球科研论文合作网络的结构异质性及其邻近性机理. 地理学报, 2017, 72(4): 737-752.]
[52] Nadin V, Dühr S.Some help with Euro-planning jargon. Town & Country Planning, 2005, 74(3): 82-84.
[53] Taylor P J, Evans D M, Pain K.Application of the interlocking network model to mega-city-regions: Measuring polycentricity within and beyond city-regions. Regional Studies, 2008, 42(8): 1079-1093.http://www.tandfonline.com/doi/abs/10.1080/00343400701874214
[54] Ma Haitao.Triangle model of Chinese returnees: A tentative method for city networks based on talent flow. Geographical Research, 2017, 36(1): 161-170.
[马海涛. 基于人才流动的城市网络关系构建. 地理研究, 2017, 36(1): 161-170.]
[1] 张国俊,黄婉玲,周春山,曹永旺. 城市群视角下中国人口分布演变特征[J]. 地理学报, 2018, 73(8): 1513-1525.
[2] 崔学刚, 方创琳, 张蔷. 山东半岛城市群高速交通优势度与土地利用效率的空间关系[J]. 地理学报, 2018, 73(6): 1149-1161.
[3] 方创琳,王振波,马海涛. 中国城市群形成发育规律的理论认知与地理学贡献[J]. 地理学报, 2018, 73(4): 651-665.
[4] 熊鹰,陈云,李静芝,阎晓静. 基于土地集约利用的长株潭城市群建设用地供需仿真模拟[J]. 地理学报, 2018, 73(3): 562-577.
[5] 刘海猛,方创琳,黄解军,朱向东,周艺,王振波,张蔷. 京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报, 2018, 73(1): 177-191.
[6] 曹诗颂,胡德勇,赵文吉,陈姗姗,程庆文. 不透水地表盖度视角下中美城市群空间结构对比——以“京津冀”与“波士华”为例[J]. 地理学报, 2017, 72(6): 1017-1031.
[7] 匡文慧,杨天荣,颜凤芹. 河北雄安新区建设的区域地表本底特征与生态管控[J]. 地理学报, 2017, 72(6): 947-959.
[8] 王录仓,武荣伟,李巍. 中国城市群人口老龄化时空格局[J]. 地理学报, 2017, 72(6): 1001-1016.
[9] 任宇飞,方创琳,蔺雪芹. 中国东部沿海地区四大城市群生态效率评价[J]. 地理学报, 2017, 72(11): 2047-2063.
[10] 郭庆宾,张中华. 长江中游城市群要素集聚能力的时空演变[J]. 地理学报, 2017, 72(10): 1746-1761.
[11] 王利伟,冯长春. 转型期京津冀城市群空间扩展格局及其动力机制研究——基于夜间灯光数据方法[J]. 地理学报, 2016, 71(12): 2155-2169.
[12] 顾朝林,王颖,邵园,顾江. 基于功能区的行政区划调整研究——以绍兴城市群为例[J]. 地理学报, 2015, 70(8): 1187-1201.
[13] 方创琳, 毛其智, 倪鹏飞. 中国城市群科学选择与分级发展的争鸣及探索[J]. 地理学报, 2015, 70(4): 515-527.
[14] 刘涛,齐元静,曹广忠. 中国流动人口空间格局演变机制及城镇化效应——基于2000和2010年人口普查分县数据的分析[J]. 地理学报, 2015, 70(4): 567-581.
[15] 葛莹,蒲英霞,赵慧慧,李云婷. 基于边际K函数的长三角地区城市群经济空间划分[J]. 地理学报, 2015, 70(4): 528-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发