Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1765-1777     DOI: 10.11821/dlxb201809012
  气候变化与生态环境 本期目录 | 过刊浏览 | 高级检索 |
五华河流域非点源污染风险区和风险路径识别
陈裕婵1(),张正栋1(),万露文2,张杰1,杨传训3,叶晨1,李青圃1
1. 华南师范大学地理科学学院,广州 510631
2. 密歇根州立大学地球与环境科学系,美国 东兰辛 48823
3. 广州地理研究所,广州 510070
Identifying risk areas and risk paths of non-point source pollution in Wuhua River Basin
CHEN Yuchan1(),ZHANG Zhengdong1(),WAN Luwen2,ZHANG Jie1,YANG Chuanxun3,YE Chen1,LI Qingpu1
1. School of Geography, South China Normal University, Guangzhou 510631, China
2. Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48823, USA
3. Guangzhou Institute of Geography,Guangzhou 510070,China
全文: PDF (4914 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

非点源污染是亟待解决的水环境问题之一,确定非点源污染过程中的潜在风险区和风险路径是解决非点源污染问题的关键。引入景观生态学中的最小累积阻力模型,以高污染负荷的耕地、建设用地为“源”,运用表示下垫面产流性质的地形湿度指数和CN值构建阻力面,对五华河流域的非点源污染高风险区和风险路径进行可视化识别和分析。结果显示:① 在下垫面产流作用下,五华河流域低产流区主要分布在流域西南部,高产流区呈“人”形贯穿全流域。② 最小累积阻力模型能够有效识别流域内非点源污染风险区和风险路径,五华河流域非点源污染高风险区分布于迥龙、田心、龙母、铁场、登云、通衢、鹤市、紫市、岐岭、华城、转水、潭下、水寨等地的河道两岸,以耕地为“源”的非点源污染风险路径与建设用地为“源”的非点源污染风险路径在空间分布上差异较大。③ 耕地对五华河水质的影响大于建设用地对五华河水质的影响,耕地中的富营养物质和沉积物更容易随地表径流进入受纳水体。④ 流域尺度上治理以耕地为“源”的非点源污染应在邻近耕地的河流两岸建立一定宽度的植被缓冲区,治理以建设用地为“源”的非点源污染宜围绕关键源区进行治理。本研究为非点源污染风险区和风险路径的识别提供一种新的思路,为进一步开展非点源污染治理提供理论依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈裕婵
张正栋
万露文
张杰
杨传训
叶晨
李青圃
关键词 非点源污染风险区识别风险路径识别最小累积阻力模型五华河流域 
Abstract

Non-point source pollution is one of the most severe problems impacting water environments. Identifying potential risk areas and risk paths contributing to non-point source pollution is the soution to this problem. This study introduces the minimum cumulative resistance model of landscape ecology, which is based on land use and soil mapping at a scale of 1∶100000 and DEM data with a resolution of 30 m. The model takes high pollution-loaded cultivated land and construction land as the main sources and uses the Topographic Wetness Index and Runoff Curve Numbers, which can describe the underlying resistance surface runoff yield characteristics, to visually identify and analyze the risk areas and risk paths of the Wuhua River Basin. The results show that underlying surface runoff production results in low-yield flow areas that are mainly concentrated in the southwest of the basin, while high-yield flow areas herringbone throughout the study area. The minimum cumulative resistance model can effectively identify the risk areas and risk paths in this basin. The high-risk areas of non-point source pollution are mainly distributed in Jionglong, Tianxin, Longmu, Tiechang, Dengyun, Tongqu, Heshi, Zishi, Qiling, Huacheng, Zhuanshui, Tanxia and Shuizai, which are located along both sides of the river. The spatial distributions of the risk paths of cultivated land and construction land are significantly different. The effects of cultivated land on water quality of the river are greater than those of construction land on it, and the nutrients and sediments from cultivated land are more likely to run into the receiving water via surface runoff. Vegetation buffer zones should be set up on both sides of the river adjacent to cultivated land when we deal with non-point source pollution that originates from cultivated land, and the harnessment of non-point source pollution originating from construction land should be monitored around major source areas. This study provides a novel method for the identification of source areas and risk paths of non-point source pollution and a theoretical basis to formulate future management strategies.

Key wordsnon-point source pollution    risk areas identification    risk paths identification    minimum cumulative resistance model    Wuhua River Basin
收稿日期: 2017-07-10      出版日期: 2018-09-19
基金资助:国家自然科学基金项目(41471147)
引用本文:   
陈裕婵, 张正栋, 万露文等 . 五华河流域非点源污染风险区和风险路径识别[J]. 地理学报, 2018, 73(9): 1765-1777.
CHEN Yuchan, ZHANG Zhengdong, WAN Luwen et al . Identifying risk areas and risk paths of non-point source pollution in Wuhua River Basin[J]. Acta Geographica Sinica, 2018, 73(9): 1765-1777.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809012      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1765
Fig. 1  五华河流域区位图
土地利用类型 不同土壤水文类型的CN值
A B C D
水田 58 69 77 80
旱地 60 72 79 83
有林地 30 55 70 77
灌木林地 35 56 70 77
疏林地 45 66 77 88
其他林地 43 65 76 82
高覆盖度草地 39 61 74 80
中覆盖度草地 49 69 79 84
水域 100 100 100 100
城乡居民点用地 57 72 81 86
工交建设用地 81 88 91 93
Tab. 1  五华河流域土地利用类型及相应的CN值
国际制标准 美制标准
分类 分类标准(mm) 分类 分类标准(mm)
黏粒 < 0.002 Clay (黏粒) < 0.002
粉砂 0.002~0.02 Silt (粉砂) 0.002~0.05
细砂粒 0.02~0.2 Sand (砂土) 0.05~2
粗砂粒 0.2~2 Gravel (砾石) > 2
石砾 > 2
Tab. 2  国际制和美制土壤粒径对比
水文分组 性质 饱和导水率(mm/hr) 对应流域土壤类型
A 在完全湿润的条件下土壤具有较高的渗透率。此类土壤主要由砾石组成,排水、导水能力强,因此产流低。 > 110 ——
B 在完全湿润的条件下土壤具有中等的渗透率。此类土壤主要由砂壤组成,排水、导水能力中等。 14~110 页黄壤、麻红壤、片赤红壤、酸性紫色土
C 在完全湿润的条件下土壤具有较低的渗透率。此类土壤大多在一定深处有不透水层,下渗和导水能力较低。 1.4~14 潴育水稻土、页红壤、麻赤红壤、页赤红壤、侵蚀赤红壤、赤红壤
D 在完全湿润的条件下土壤具有很低的渗透率。此类土壤主要为黏土,涨水能力强,大多有永久水位线,导水能力很低。 < 1.4 ——
Tab. 3  水文分组标准及流域土壤水文分组
Fig. 2  五华河流域下垫面条件
Fig. 3  五华河流域下垫面性质影响下地表产流空间分布
Fig. 4  五华河流域非点源污染风险区
最小累积阻力值(C) 耕地为源 建设用地为源
路径数 百分比(%) 路径数 百分比(%)
1级(C=0) 1516 49.22 34 1.19
2级(0<C≤500) 427 13.86 68 2.38
3级(500<C≤5000) 385 12.50 628 22.00
4级(5000<C≤10000) 342 11.11 527 18.46
5级(C>10000) 410 13.31 1598 55.97
总计 3080 100.00 2855 100.00
路径阻力最大值(Cmax) 38632.7 65109.8
Tab. 4  最小累积阻力值
Fig. 5  五华河流域非点源污染风险路径
Fig. 6  五华河流域水样采集点
水样采集点 溶解氧 悬浮物 硫酸盐 六价铬 总磷
河子口 5.5 16.06 22.5 0.09 0.06
五华河口 5.4 27.71 87.58 0.18 0.02
Tab. 5  水样检测结果(mg/L)
[1] Li Xiaoran, Li Yangbing, Shao Jingan.A study on the response of non-point source pollution to the variation of land use and social economy. Acta Ecologica Sinica, 2016, 36(19): 6050-6061.
[李潇然, 李阳兵, 邵景安. 非点源污染输出对土地利用和社会经济变化响应的案例研究. 生态学报, 2016, 36(19): 6050-6061.]
[2] Yin Cai, Liu Miao, Sun Fengyun, et al.Influencing factors of non-point source pollution of watershed based on boosted regression tree algorithm. Chinese Journal of Applied Ecology, 2016, 27(3): 911-919.
[尹才, 刘淼, 孙凤云, . 基于增强回归树的流域非点源污染影响因子分析. 应用生态学报, 2016, 27(3): 911-919.]http://d.wanfangdata.com.cn/Periodical/yystxb201603030
[3] Dowd B M, Press D, Huertos M L.Agricultural nonpoint source water pollution policy:The case of California's Central Coast. Agriculture Ecosystems & Environment, 2008, 128(3): 151-161.http://www.sciencedirect.com/science/article/pii/S016788090800176X
[4] Huang Ning, Wang Hongying, Lin Tao, et al.Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China. Chinese Journal of Applied Ecology, 2016, 27(10): 3325-3334.
[黄宁, 王红映, 吝涛, . 基于“源—汇”理论的流域非点源污染控制景观格局调控框架: 以厦门市马銮湾流域为例. 应用生态学报, 2016, 27(10): 3325-3334.]http://d.wanfangdata.com.cn/Periodical/yystxb201610032
[5] Li Zhuheng, Liu Miao, Li Chunlin, et al.Non-point source pollution simulation under land use change scenarios in Hun-Taizi River Watershed. Chinese Journal of Applied Ecology, 2016, 27(9): 2891-2898.
[李铸衡, 刘淼, 李春林, . 土地利用变化情景下浑河—太子河流域的非点源污染模拟. 应用生态学报, 2016, 27(9): 2891-2898.]http://d.wanfangdata.com.cn/Periodical/yystxb201609020
[6] White M J, Storm D E, Busteed P R, et al.Evaluating nonpoint source critical source area contributions at the watershed scale. Journal of Environmental Quality, 2009, 38(4): 1654-1663.https://www.agronomy.org/publications/jeq/abstracts/38/4/1654
DOI: 10.2134/jeq2008.0375      PMID: 19549942     
[7] Zhou H, Gao C.Assessing the risk of phosphorus loss and identifying critical source areas in the Chaohu Lake Watershed, China. Environmental Management, 2011, 48(5): 1033-1043.http://link.springer.com/10.1007/s00267-011-9743-z
[8] Zhou Huiping, Gao Chao, Zhu Xiaodong.Identification of critical source areas: An efficient way for agricultural non-point source pollution control. Acta Ecologica Sinica, 2005, 25(12): 3368-3374.
[周慧平, 高超, 朱晓东. 关键源区识别: 农业非点源污染控制方法. 生态学报, 2005, 25(12): 3368-3374.]
[9] Sivertun Å, Prange L.Non-point source critical area analysis in the Gisselö Watershed using GIS. Environmental Modelling & Software, 2003, 18(10): 887-898.http://www.sciencedirect.com/science/article/pii/S1364815203001075
[10] Endreny T A, Eric F W.Watershed weighting of export coefficients to map critical phosphorous loading areas. Journal of the American Water Resources Association, 2010, 39(1): 165-181.http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2003.tb01569.x/abstract
[11] Hughes K J, Magette W L, Kurz I.Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes. Journal of Hydrology, 2005, 304(1-4): 430-445.http://linkinghub.elsevier.com/retrieve/pii/S0022169404005104
[12] Niraula R, Kalin L, Srivastava P, et al.Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 2013, 268(23): 123-133.http://linkinghub.elsevier.com/retrieve/pii/S0304380013004006
[13] Wang Niu, Lu Haiming, Zhou Ying, et al.Identifying critical source areas of non-point source phosphorus export based on topographic index. Journal of China Hydrology, 2016, 36(2): 12-16.
[王妞, 陆海明, 邹鹰, . 基于地形指数的流域非点源磷素输出关键源区识别. 水文, 2016, 36(2): 12-16.]
[14] Liu Jie, Ye Jing, Yang Wan, et al.A GIS-based landscape pattern optimization approach for Lake Dianchi Watershed. Journal of Natural Resources, 2012, 27(5): 801-808.
[刘杰, 叶晶, 杨婉, . 基于GIS的滇池流域景观格局优化. 自然资源学报, 2012, 27(5): 801-808.]http://d.wanfangdata.com.cn/periodical_zrzyxb201205009.aspx
[15] Dong J, Dai W, Shao G, et al.Ecological network construction based on minimum cumulative resistance for the city of Nanjing, China. ISPRS International Journal of Geo-Information, 2015, 4(4): 2045-2060.http://www.mdpi.com/2220-9964/4/4/2045
DOI: 10.3390/ijgi4042045     
[16] Blazquez-Cabrera S, Gastón A, Beier P, et al.Influence of separating home range and dispersal movements on characterizing corridors and effective distances. Landscape Ecology, 2016, 31(10): 2355-2366.http://link.springer.com/10.1007/s10980-016-0407-5
[17] Chen Xin, Peng Jian, Liu Yanxu, et al.Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity. Geographical Research, 2017, 36(3): 471-484.
[陈昕, 彭建, 刘焱序, . 基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建. 地理研究, 2017, 36(3): 471-484.]http://d.wanfangdata.com.cn/Periodical/dlyj201703007
[18] Wang J, Shao J, Wang D, et al.Identification of the "source" and "sink" patterns influencing non-point source pollution in the Three Gorges Reservoir Area. Journal of Geographical Sciences, 2016, 26(10): 1431-1448.http://link.springer.com/10.1007/s11442-016-1336-6
[19] Fu Yonghu.The theory and patterns for designing dematerialization and low environmental risk land-use system in intensive agricultural area [D]. Beijing: China Agricultural University, 2016.
[付永虎. 高集约化农区投入减量化与低环境风险的土地利用系统设计: 理论与模式[D]. 北京: 中国农业大学, 2016.]
[20] Djodjic F, Villa A.Distributed, high-resolution modelling of critical source areas for erosion and phosphorus losses. Ambio, 2015, 44(2): 241-251.http://link.springer.com/10.1007/s13280-014-0618-4
[21] Liu Jie, Pang Shujiang, He Yangyang, et al.Critical area identification of phosphorus loss based on runoff characteristics in small watershed. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 241-249.
[刘洁, 庞树江, 何杨洋, . 基于小流域产流特征的磷流失关键源区识别. 农业工程学报, 2017, 33(20): 241-249.]研究点分析
[22] Soil Survey Office of Guangdong Province. Soil Type Database of Guangdong. Beijing: Science Press, 1996.
[广东省土壤普查办公室. 广东土种志. 北京: 科学出版社, 1996.]
[23] Zhang Jiping, Qiao Qing, Liu Chunlan, et al.Ecological land use planning for Beijing City based on the minimum cumulative resistance model. Acta Ecologica Sinica, 2017, 37(19): 6313-6321.
[张继平, 乔青, 刘春兰, . 基于最小累积阻力模型的北京市生态用地规划研究. 生态学报, 2017, 37(19): 6313-6321.]
[24] Li Kai, Zeng Fantang, Fang Huaiyang, et al.Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao River Watershed based on L-THIA model. Environmental Science, 2013, 34(11): 4218-4225.
[李凯, 曾凡棠, 房怀阳, . 基于L-THIA模型的市桥河流域非点源氮磷负荷分析. 环境科学, 2013, 34(11): 4218-4225.]
[25] Chen L, Tian H, Fu B, et al.Development of a new index for integrating landscape patterns with ecological processes at watershed scale. Chinese Geographical Science, 2009, 19(1): 37-45.http://link.springer.com/10.1007/s11769-009-0037-9
[26] Li Hengpeng, Liu Xiaozheng, Huang Wenyu.The non-point output of different landuse types in Zhexi hydraulic region of Taihu Basin. Acta Geographica Sinica, 2004, 59(3): 401-408.
[李恒鹏, 刘晓玫, 黄文钰. 太湖流域浙西区不同土地类型的面源污染产出. 地理学报, 2004, 59(3): 401-408.]
[27] Zhong Jianbing, Shao Jingan, Yang Yuzhu.Characteristics of non-point source pollution load of crop farming undergoing the background of livelihood diversification. Acta Geographica Sinica, 2016, 71(7): 1201-1214.
[钟建兵, 邵景安, 杨玉竹. 生计多样化背景下种植业非点源污染负荷演变. 地理学报, 2016, 71(7): 1201-1214.]研究点分析
[28] Walter M T, Walter M F, Brooks E S, et al.Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment. Journal of Soil & Water Conservation, 2000, 55(3): 277-284.
[29] Knaapen J P, Scheffer M, Harms B.Estimating habitat isolation in landscape planning. Landscape & Urban Planning, 1992, 23(1): 1-16.http://www.sciencedirect.com/science/article/pii/016920469290060D
[30] Deng Jinjie, Chen Liuxin, Yang Chengyun, et al.Significance evaluation of ecological corridor in an highly-urbanized areas: A case study of Shenzhen. Geographical Research, 2017, 36(3): 573-582.
[邓金杰, 陈柳新, 杨成韫, . 高度城市化地区生态廊道重要性评价探索: 以深圳为例. 地理研究, 2017, 36(3): 573-582.]
[31] Wang Jinliang, Xie Deti, Shao Jing'an, et al. Identification of source-sink risk pattern of agricultural non-point source pollution in cultivated land in Three Gorge Reservoir Area based on accumulative minimum resistance model. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 206-215.
[王金亮, 谢德体, 邵景安, . 基于最小累积阻力模型的三峡库区耕地面源污染源—汇风险识别. 农业工程学报, 2016, 32(16): 206-215.]http://d.wanfangdata.com.cn/Periodical/nygcxb201616029
[32] Guo Hongbin, Huang Yixiong, Ye Gongfu, et al.A study on the evaluation and optimization of urban ecological function network in Xiamen. Journal of Natural Resources, 2010, 25(1): 71-79.
[郭宏斌, 黄义雄, 叶功富, . 厦门城市生态功能网络评价及其优化研究. 自然资源学报, 2010, 25(1): 71-79.]
[33] Ye Yuyao, Su Yongxian, Zhang Hongou, et al.Ecological resistance surface model and its application in urban expansion simulations. Acta Geographica Sinica, 2014, 69(4): 485-496.
[叶玉瑶, 苏泳娴, 张虹鸥, . 生态阻力面模型构建及其在城市扩展模拟中的应用. 地理学报, 2014, 69(4): 485-496.]http://d.wanfangdata.com.cn/Periodical/dlxb201404005
[34] Yu Qiqiang, Yue Depeng, Di Y, et al.Layout optimization of ecological nodes based on BCBS model. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 330-336.
[于强, 岳德鹏, Di Y, . 基于BCBS模型的生态节点布局优化. 农业机械学报, 2016, 47(12): 330-336.]http://d.wanfangdata.com.cn/Periodical/nyjxxb201612041
[35] Zhang Qibin.Study on landscape pattern construcion optimization scheme of Dengkou County [D]. Beijing Forestry University, 2016.
[张启斌. 磴口县景观格局建设优化方案研究[D]. 北京: 北京林业大学, 2016.]
[36] Zhang Caixia, Yang Qinke, Li Rui.Advancement in topographic wetness index and its application. Progress in Geography, 2005, 24(6): 116-123.
[张彩霞, 杨勤科, 李锐. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 2005, 24(6): 116-123.]http://d.wanfangdata.com.cn/Periodical/dlkxjz200506014
[37] Beven K J, Kirkby M J.A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 1979, 24(1): 43-69.http://www.tandfonline.com/doi/abs/10.1080/02626667909491834
[38] Thomas I A, Jordan P, Mellander P E, et al.Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment, 2016, 556(6): 276-290.https://linkinghub.elsevier.com/retrieve/pii/S0048969716303941
[39] Xu Yan, Pan Wenbin.SCS model for watershed runoff calculation in ArcView. Research of Soil and Water Conservation, 2006, 13(4): 176-179.
[许彦, 潘文斌. 基于ArcView的SCS模型在流域径流计算中的应用. 水土保持研究, 2006, 13(4): 176-179.]
[40] Cai Yongming, Zhang Keli, Li Shuangcai.Study on the conversion of different soils texture. Acta Pedologica Sinica, 2003, 40(4): 511-517.
[蔡永明, 张科利, 李双才. 不同粒径制间土壤质地资料的转换问题研究. 土壤学报, 2003, 40(4): 511-517.]
[41] Chen Lajiao.Simulation of runoff and sediment yield by land use/cover change based on SWAT model: A case study of Malian River in Longdong [D]. Jinhua: Zhejiang Normal University, 2006.
[陈腊娇. 基于SWAT模型的土地利用/覆被变化产流产沙效应模拟: 以陇东马莲河流域为例[D]. 金华: 浙江师范大学, 2006.]
[42] He Wei.Study on the application of the SWAT model in the watershed on Loess Plateau [D]. Beijing: Beijing Forestry University, 2007.
[贺维. SWAT模型在晋西黄土区小流域中的应用研究[D]. 北京: 北京林业大学, 2007.]
[1] 钟建兵,邵景安,杨玉竹. 生计多样化背景下种植业非点源污染负荷演变[J]. 地理学报, 2016, 71(7): 1201-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发