Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1737-1747     DOI: 10.11821/dlxb201809010
  地表过程 本期目录 | 过刊浏览 | 高级检索 |
基于洪涝情景模拟的城市公共服务灾害应急响应空间可达性评价——以医疗急救为例
殷杰1,2(),许世远1,2(),经雅梦2,尹占娥3,廖邦固3
1. 华东师范大学地理信息科学教育部重点实验室,上海 200241
2. 华东师范大学地理科学学院,上海 200241
3. 上海师范大学地理系,上海 200234
Evaluating the impact of fluvial flooding on emergency responses accessibility for a mega-city's public services: A case study of emergency medical service
YIN Jie1,2(),XU Shiyuan1,2(),JING Yameng2,YIN Zhan'e3,LIAO Banggu3
1. Key Laboratory of Geo-information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China
2. School of Geographic Sciences, East China Normal University, Shanghai 200241, China
3. Department of Geography, Shanghai Normal University, Shanghai 200234, China
全文: PDF (9899 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

在气候变化和城市化背景下,日益频发的洪涝灾害业已成为当前中国城市面临的重大挑战,也是城市灾害管理和应急响应研究的热点问题之一。本文旨在构建一套适用于城市尺度的洪涝灾害应急响应能力评估范式,以上海市外环以内中心城区为研究区,采用洪涝数值模拟与GIS网络分析相结合的研究方法,评估了当前以及未来正常条件和不同重现期洪涝情景下,城市关键公共服务部门(120急救)应急响应的空间可达性。结果显示:洪涝淹没强度(范围和水深)、道路交通状况(车流速度)以及应急服务机构的数量和位置共同决定了城市洪涝灾害医疗急救的服务范围及响应时间;由于上海市中心城区洪涝影响范围主要分布在黄浦江两岸2~3 km以内区域,因此洪涝对整个中心城区应急医疗服务的影响有限,主要是位于滨江地区部分医院的应急响应范围较正常状态下明显减少,120急救车辆无法或延迟达到部分救援点。研究表明基于洪涝情景模拟的城市公共服务应急响应空间可达性定量化评估方法,具有重要的科学价值和实践意义,可为中国城市洪涝灾害应急管理提供决策依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷杰
许世远
经雅梦
尹占娥
廖邦固
关键词 城市洪涝情景模拟应急响应空间可达性上海 
Abstract

In the context of climate change and urbanization, increase of flood disasters has been a great challenge for Chinese cities and one of the hotspots in natural hazards research. This paper aims to develop a commonly used paradigm for urban flood emergency assessment at city scale. The city center (within outer ring) of Shanghai, China was selected as the study area because it exhibits enhanced consequences of flooding. A simplified hydrodynamic model (FloodMap) that tightly couples a 1D river flow model with a 2D floodplain flow model in urban environment, was used to predict 100-year and 1000-year flood inundation in the current state, the 2030s and the 2050s with relative sea level rise taken into account. Moreover, GIS-based network analysis (service area and closest facility) was employed to evaluate the transportation conditions and emergency responses accessibility of critical public service sectors (Medical Treatment) under normal conditions and multiple flood scenarios. The results show that the performance of the emergency medical services was largely dependent on flood magnitude (extent and depth), traffic conditions (travel speed) and emergency station positioning. In normal conditions, when no flood restrictions are in place, emergency medical services would be able to reach most parts of the study area within 15 minutes even under significant traffic congestion. As inundation would mainly occur within 2-3 km of Huangpu river banks, flood has a limited influence on emergency medical treatment for the entire region of central Shanghai. Even during 1000-year flood scenario in the 2050s, over half (51%) of the area is predicted to be accessible within 15 minutes. Floodwater may directly compromise a number of hospitals, leading to travel delays and obvious disruption of emergency services in riparian areas. This study suggests that the framework developed for coupling flood modeling with urban emergency response assessment, is proved to be effective and practical, and will provide a support to the decision making of urban flood emergency management.

Key wordsurban flooding    scenario modeling    emergency response    spatial accessibility    Shanghai
收稿日期: 2017-06-26      出版日期: 2018-09-19
基金资助:国家重点研发计划(2017YFE0100700);国家自然科学基金项目(51761135024, 41871164);教育部人文社会科学研究规划基金项目(17YJAZH111);中央高校基本科研业务费项目(2018ECNU-QKT001, 2017ECNU-KXK013)
引用本文:   
殷杰, 许世远, 经雅梦等 . 基于洪涝情景模拟的城市公共服务灾害应急响应空间可达性评价——以医疗急救为例[J]. 地理学报, 2018, 73(9): 1737-1747.
YIN Jie, XU Shiyuan, JING Yameng et al . Evaluating the impact of fluvial flooding on emergency responses accessibility for a mega-city's public services: A case study of emergency medical service[J]. Acta Geographica Sinica, 2018, 73(9): 1737-1747.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809010      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1737
Fig. 1  研究区示意图
Fig. 2  上海市中心城区洪涝情景最大淹没模拟结果
洪涝情景 5 min应急服务区(km2) 10 min应急服务区(km2) 15 min应急服务区(km2)
车速S1 车速S2 车速S3 车速S1 车速S2 车速S3 车速S1 车速S2 车速S3
正常状态
(无积水)
480
(72%)
261
(39%)
83
(12%)
653
(98%)
480
(72%)
262
(39%)
666
(100%)
610
(92%)
390
(59%)
2010年
100年一遇
467
(70%)
257
(39%)
82
(12%)
634
(95%)
468
(70%)
258
(39%)
653
(98%)
593
(89%)
382
(57%)
2010年
1000年一遇
438
(66%)
235
(35%)
72
(11%)
593
(89%)
439
(66%)
235
(35%)
605
(91%)
556
(83%)
358
(54%)
2030年
100年一遇
461
(69%)
254
(38%)
80
(12%)
628
(94%)
462
(69%)
254
(38%)
647
(97%)
586
(88%)
377
(57%)
2030年
1000年一遇
427
(64%)
226
(34%)
70
(11%)
572
(86%)
427
(64%)
226
(34%)
582
(87%)
536
(80%)
347
(52%)
2050年
100年一遇
451
(68%)
246
(37%)
77
(12%)
616
(92%)
452
(68%)
246
(37%)
635
(95%)
575
(86%)
369
(55%)
2050年
1000年一遇
417
(63%)
221
(33%)
69
(10%)
561
(84%)
418
(63%)
222
(33%)
569
(85%)
525
(79%)
339
(51%)
Tab. 1  正常条件和洪涝情景下城市120医疗应急服务范围
Fig. 3  正常条件下城市120医疗应急响应空间可达性与服务范围
Fig. 4  100年一遇洪涝情景下城市120医疗应急响应空间可达性与服务范围
Fig. 5  1000年一遇洪涝情景下城市120医疗应急响应空间可达性与服务范围
Fig. 6  正常条件和洪涝情景下城市120医疗急救到老年(儿童)福利机构的最快路径图
[1] IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013.
[2] IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Cambridge: Cambridge University Press, 2014.
[3] Yin Zhane, Xu Shiyuan, Yin Jie, et al.Small-scale based scenario modeling and disaster risk assessment of urban rainstorm water-logging. Acta Geographica Sinica, 2011, 65(5): 553-562.
[尹占娥, 许世远, 殷杰, . 基于小尺度的城市暴雨内涝灾害情景模拟与风险评估. 地理学报, 2011, 65(5): 553-562.]
[4] Yin Jie.Urban pluvial flood scenario modeling and emergency response assessment using high resolution Lidar-DSM. Geographical Research, 2017, 36(6): 1138-1146.
[殷杰. 基于高精度地形表面模型的城市雨洪情景模拟与应急响应能力评价. 地理研究, 2017, 36(6): 1138-1146.]研究点分析
[5] Lumbroso D, Stone K, Vinet F.An assessment of flood emergency plans in England and Wales, France and the Netherlands. Natural Hazards, 2011, 58(1): 341-363.http://link.springer.com/10.1007/s11069-010-9671-x
[6] Defra. The National Flood Emergency Framework for England. London: Environment Agency, 2014.http://www.mendeley.com/research/national-flood-emergency-framework-england/
[7] Green D, Yu D P, Pattison I, et al.City-scale accessibility of emergency responders operating during flood events. Natural Hazards and Earth System Sciences, 2017, 17: 1-16.https://www.nat-hazards-earth-syst-sci.net/17/1/2017/
[8] Coles D, Yu D P, Wilby R, et al.Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK. Journal of Hydrology, 2017, 546: 419-436.https://linkinghub.elsevier.com/retrieve/pii/S0022169416308022
[9] Yin J, Yu D P, Yin Z E, et al.Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. Journal of Hydrology, 2016, 537: 138-145.https://linkinghub.elsevier.com/retrieve/pii/S0022169416301421
[10] Liu Xiaotao.Shanghai Flood Prevention Handbook. Shanghai: Shanghai Popular Science Press, 2008.
[刘晓涛. 上海市防汛工作手册. 上海: 上海科学普及出版社, 2008.]
[11] Gong Shiliang, Yang Shilun.Effect of land subsidence on urban flood prevention engineering in Shanghai. Scientia Geographica Sinica, 2008, 28(4): 543-547.
[龚士良, 杨世伦. 地面沉降对上海黄浦江防汛工程的影响分析. 地理科学, 2008, 28(4): 543-547.]http://d.wanfangdata.com.cn/Periodical/dlkx200804015
[12] Wu X D, Yu D P, Chen Z, et al.An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai. Natural Hazards, 2012, 63(2): 305-323.http://link.springer.com/10.1007/s11069-012-0153-1
[13] Quan R S.Risk assessment of flood disaster in Shanghai based on spatial-temporal characteristics analysis from 251 to 2000. Environmental Earth Sciences, 2014, 72(11): 4627-4638.http://link.springer.com/10.1007/s12665-014-3360-0
[14] Yin J, Yu D P, Yin Z E, et al.Modelling the anthropogenic impacts on fluvial flood risks in a coastal mega-city: A scenario-based case study in Shanghai, China. Landscape and Urban Planning, 2015, 136: 144-155.http://linkinghub.elsevier.com/retrieve/pii/S0169204614003077
[15] Yin J, Yu D P, Yin Z E, et al.Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China. Climatic Change, 2013, 119(3): 919-932.http://link.springer.com/10.1007/s10584-013-0749-9
[16] Yin J, Yu D P, Yin Z E, et al.Multiple scenario analyses of Huangpu River flooding using a 1D/2D coupled flood inundation model. Natural Hazards, 2013, 66(2): 577-589.http://link.springer.com/10.1007/s11069-012-0501-1
[17] Yin Jie, Yin Zhane, Yu Dapeng, et al.Hazard analysis of extreme storm flooding in the context of sea level rise: A case study of Huangpu river basin. Geographical Research, 2013, 32(12): 2215-2221.
[殷杰, 尹占娥, 于大鹏, . 海平面上升背景下黄浦江极端风暴洪水危险性分析. 地理研究, 2013, 32(12): 2215-2221.]
[18] Yu D P, Lane S N.Urban fluvial flood modelling using a two-dimensional diffusion wave treatment, part 1: Mesh resolution effects. Hydrological Processes, 2006, 20(7): 1541-1565.http://doi.wiley.com/10.1002/%28ISSN%291099-1085
[19] Yu D P, Lane S N.Urban fluvial flood modelling using a two-dimensional diffusion wave treatment (Part 2): Development of a sub grid-scale treatment. Hydrological Processes, 2006, 20(7): 1567-1583.http://doi.wiley.com/10.1002/%28ISSN%291099-1085
[20] Deng Yu, Cai Jianming, Yang Zhenshan, et al.Measuring time accessibility with its spatial characteristics in urban areas of Beijing. Acta Geographica Sinica, 2012, 67(2): 169-178.
[邓羽, 蔡建明, 杨振山, . 北京城区交通时间可达性测度及其空间特征分析. 地理学报, 2012, 67(2): 169-178.]
[21] NYC Mayor's Office. NYC Hurricane Sandy after Action: Report and Recommendations to Mayor Michael R. Bloomberg. New York City,USA, 2013.http://hdl.handle.net/10590/3099
[1] 於家,温家洪,陈芸,廖邦固,杜士强. 基于应急疏散智能体模型模拟的城市避难所空间配置——以上海市静安区为例[J]. 地理学报, 2017, 72(8): 1458-1475.
[2] 曹有挥,梁双波,吴威,陈欢,叶士琳. 枢纽港口城市港航服务业空间组织机理——以上海市为例[J]. 地理学报, 2017, 72(12): 2226-2240.
[3] 任国平,刘黎明,孙锦,卓东,袁承程. 基于“胞—链—形”分析的都市郊区村域空间发展模式识别与划分[J]. 地理学报, 2017, 72(12): 2147-2165.
[4] 石忆邵,周蕾. 上海市地下商业空间使用权估价及空间分异[J]. 地理学报, 2017, 72(10): 1787-1799.
[5] 丁亮,钮心毅,宋小冬. 上海中心城就业中心体系测度----基于手机信令数据的研究[J]. 地理学报, 2016, 71(3): 484-499.
[6] 邓华,邵景安,王金亮,高明,魏朝富. 多因素耦合下三峡库区土地利用未来情景模拟[J]. 地理学报, 2016, 71(11): 1979-1997.
[7] 汪明峰, 程红, 宁越敏. 上海城中村外来人口的社会融合及其影响因素[J]. 地理学报, 2015, 70(8): 1243-1255.
[8] 段德忠,杜德斌,刘承良. 上海和北京城市创新空间结构的时空演化模式[J]. 地理学报, 2015, 70(12): 1911-1925.
[9] 孙斌栋,但波. 上海城市建成环境对居民通勤方式选择的影响[J]. 地理学报, 2015, 70(10): 1664-1674.
[10] 孙斌栋, 魏旭红. 上海都市区就业—人口空间结构演化特征[J]. 地理学报, 2014, 69(6): 747-758.
[11] 王朝辉, 陆林, 方婷, 夏巧云. 世博建设期上海市旅游住宿产业空间格局演化[J]. 地理学报, 2012, 67(10): 1423-1437.
[12] 匡文慧, 刘纪远, 邵全琴, 何剑锋, 孙朝阳, 田汉勤, 班艺舫. 区域尺度城市增长时空动态模型及其应用[J]. 地理学报, 2011, 66(2): 178-188.
[13] 毕秀晶, 汪明峰, 李健, 宁越敏. 上海大都市区软件产业空间集聚与郊区化[J]. 地理学报, 2011, 66(12): 1682-1694.
[14] 赵新正, 宁越敏, 魏也华, . 上海外资生产空间演变及影响因素[J]. 地理学报, 2011, 66(10): 1390-1402.
[15] 秦贤宏, 段学军, 杨剑. 基于GIS的城市用地布局多情景模拟与方案评价——以江苏省太仓市为例[J]. 地理学报, 2010, 65(9): 1121-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发