Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1714-1727     DOI: 10.11821/dlxb201809008
  地表过程 本期目录 | 过刊浏览 | 高级检索 |
三峡水库蓄水后荆江洲滩变化特征
薛兴华1,2(),常胜1,2,宋鄂平1,2
1. 湖北民族学院林学园艺学院,恩施 445000
2. 生物资源保护与利用湖北省重点实验室,恩施 445000
Evolution of floodplains and bars at the Jingjiang reach of Yangtze River, China in response to Three Gorges Reservoir impoundment
XUE Xinghua1,2(),CHANG Sheng1,2,SONG Eping1,2
1. College of Forestry and Horticulture, Hubei University for Nationalities, Enshi 445000, Hubei, China
2. Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Enshi 445000, Hubei, China
全文: PDF (5741 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

目前对三峡水库蓄水后荆江河段的洲滩演变还缺乏完整认识。基于三峡水库蓄水前后枯水期遥感影像,分析了荆江洲滩的冲淤变化与分布及形态演变。结果表明,蓄水后荆江洲滩总面积持续冲刷减小,累计冲刷4.56 km2,大部分发生在蓄水后前6年(冲刷速率0.55 km2/a)。上、下荆江洲滩的冲淤演变存在差异性。上荆江洲滩总面积一直处于冲刷萎缩中,且其强度明显大于下荆江,累计冲刷6.46 km2;下荆江前期(2002-2009年)冲刷、后期(2009-2015年)淤增,累计淤1.90 km2。在冲淤分布上,上荆江凸岸滩持续冲刷萎缩,凹岸滩前期冲刷、后期略有淤增,心滩(洲)前期淤积增长而后期冲刷萎缩;下荆江主要是凸岸滩冲刷,凹岸滩和心滩(洲)有所发展。根据滩体位置活动和冲淤动态性,荆江心滩(洲)演变被划分为8种典型类型。在形态演变上,上荆江以凸岸突出滩体和边滩发育的凹岸滩冲刷显著,形态变化不大。下荆江凸岸滩上游弯侧冲蚀后退、湾顶退缩、下游弯侧淤积伸长,形态趋向低弯扁平化,在高弯曲特定河湾平面形态格局下凸岸冲刷—淤积过程延伸到相邻河湾凹岸,成为下荆江凹岸滩和心滩淤积发展的重要因素,但淤积一般不越过凹岸湾顶。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛兴华
常胜
宋鄂平
关键词 地貌效应洲滩冲淤动态形态演变荆江三峡水库 
Abstract

At present, there is a lack of sufficient understanding of the evolution of floodplains and bars (FB) at the Jingjiang reach of Yangtze River after Three Gorges Reservoir impoundment. The erosion/accretion pattern and morphological evolution of FB at the Jingjiang reach were studied using remote sensing images acquired in low water periods before and after Gorges Reservoir impoundment. The results showed that the total area of FB at the Jingjiang reach shrank continually after the reservoir impoundment. By 2015 an area of 4.56 km2 had been scoured away, and most of the scour occurred within the first 6 years after the impoundment at an erosion rate of 0.55 km2/a. There were evident differences in erosion/accretion pattern and in morphological evolution between the upper and lower sections of Jingjiang reach. The total area of FB at the upper Jingjiang has continually decreased due to scouring after the impoundment, and the scouring intensity was greater than that in the lower Jingjiang. In contrast, erosion of the lower Jingjiang took place in the early period after the impoundment (2002-2009), but accretion was observed in the later period (2009-2015). In erosion/accretion distribution, the floodplains of upper Jingjiang reach were continually scoured and shrunk while the bars at concave banks were scoured in the early period but were accreted slightly in the later period; the mid-channel bars of upper Jingjiang were accreted in the early period but were scoured in the later period. In contrast, erosion mainly occurred at the floodplains of lower Jingjiang, while the bars at its concave banks and mid-channel bars were accreted. The mid-channel bar evolution at the Jingjiang reach after the reservoir impoundment was classified into eight types according to their position movement and erosion/accretion dynamics. On morphological evolution, the protruding parts of floodplains and the bars at concave banks of the upper Jingjiang were visibly eroded, while the morphology changed little. At the lower Jingjiang, however, the floodplains evolution had a characteristic pattern that the upstream part was eroded back, with a shrinkage of the top, while the downstream part was accreted, resulting in the alteration of convex bank from a highly curved morphology to a flattening-curved morphology. This erosion-accretion process of floodplains at the upstream convex bank even extended to the adjacent downstream concave bank when there was no obvious straight section connecting the neighboring highly curved bends or when the upstream convex bank shared the same bank with the downstream concave bank. Extension of upstream floodplain accretion to the downstream concave bank was an important reason for the development of both the bars at concave banks and the mid-channel bars at the lower Jingjiang. Generally, the accretion at the concave bank did not span to the top of concave bank.

Key wordsgeomorphic effects    floodplains and bars    erosion/accretion dynamics    morphological evolution    Jingjiang reach    Three Gorges Reservoir
收稿日期: 2017-09-27      出版日期: 2018-09-19
基金资助:国家自然科学基金项目(31460132);湖北民族学院博士启动基金项目(D2014196)
引用本文:   
薛兴华, 常胜, 宋鄂平 . 三峡水库蓄水后荆江洲滩变化特征[J]. 地理学报, 2018, 73(9): 1714-1727.
XUE Xinghua, CHANG Sheng, SONG Eping . Evolution of floodplains and bars at the Jingjiang reach of Yangtze River, China in response to Three Gorges Reservoir impoundment[J]. Acta Geographica Sinica, 2018, 73(9): 1714-1727.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809008      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1714
Fig. 1  研究区及基于遥感资料提取的2002-2015年洲滩分布
Fig. 2  2002年荆江河段洲滩基准组成结构
Fig. 3  三峡水库蓄水后不同时期内荆江河段的洲滩变化
Fig. 4  三峡水库蓄水后荆江心滩(洲)的变化分布
演变类型 演变特征 典型心滩(洲)
位置活动 冲淤情况
定位型 定位平衡型 位置稳定;冲淤变化不大 水陆洲,柳条洲(图5a)
定位冲淤交替型 位置稳定;时冲时淤,冲淤变化较大 芦家河浅滩,金城洲(图5b),广兴洲心滩
变位型 变位冲淤交替型 位置明显移动;时冲时淤,冲淤变化较大 三八滩(图5c)
变位淤扩型 位置明显移动;滩体淤增扩大 倒口窑心滩,七弓岭心滩(图5d)
后退型 主体位置不变,局部后退;持续冲蚀 关洲(图5e),火箭洲,马羊洲
前进型 整体前进型 主体位置不变,滩体整体前进;淤积扩大 张家桃园心滩,调关心滩,观音洲心滩(图5f)
洲头前进型 主体位置不变,滩头前进;淤积扩大 太平口心滩,南星洲(图5g),姣子渊心洲,乌龟洲
合滩型 心滩靠岸并滩 颜家台心滩,茅林口心滩(图5h),新河口心滩
Tab. 1  三峡水库蓄水后荆江心滩(洲)演变的类型划分
Fig. 5  三峡水库蓄水后荆江心滩(洲)演变的8种典型类型
Fig. 6  三峡水库蓄水后荆江凸、凹岸滩冲淤面积分布
Fig. 7  三峡水库蓄水后上荆江凸、凹岸滩冲淤形态演变
Fig. 8  三峡水库蓄水后下荆江凸、凹岸滩冲淤演变
Fig. 9  三峡水库蓄水后荆江分流口洲滩演变
[1] Legleiter C J.Downstream effects of recent reservoir development on the morphodynamics of a meandering channel: Savery Creek, Wyoming, USA. River Research and Applications, 2015, 31(10): 1328-1343.http://doi.wiley.com/10.1002/rra.2824
DOI: 10.1002/rra.2824     
[2] Osterkamp W R, Scott M L, Auble G T.Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the Great Plains. Wetlands, 1998, 18(4): 619-633.http://link.springer.com/10.1007/BF03161677
DOI: 10.1007/BF03161677     
[3] Shields Jr F D, Simon A, Steffen L J. Reservoir effects on downstream river channel migration. Environmental Conservation, 2000, 27(1): 54-66.http://www.journals.cambridge.org/abstract_S0376892900000072
[4] Williams G P, Wolman M G.Downstream effects of dams on alluvial rivers. Reston (VA): US Geological Survey,Professional Paper, 1984: 1-88.http://agris.fao.org/agris-search/search.do?recordID=US19850039212
[5] Zhou Zhide. River channel erosion below dams. Journal of Sediment Research, 2003(5): 28-31.
[周志德. 水库下游河床冲刷下切问题的探讨 . 泥沙研究, 2003(5): 28-31.]http://d.wanfangdata.com.cn/Periodical_nsyj200305005.aspx
[6] Brandt S A.Classification of geomorphological effects downstream of dams. Catena, 2000, 40(4): 375-401.http://linkinghub.elsevier.com/retrieve/pii/S034181620000093X
[7] Wang Suiji.Analysis of river pattern transformations in the Yellow River Basin. Progress in Geography, 2008, 27(2): 10-17.
[王随继. 黄河流域河型转化现象初探. 地理科学进展, 2008, 27(2): 10-17.]http://d.wanfangdata.com.cn/Periodical_dlkxjz200802002.aspx
[8] Xu Jiongxin.Complex response in channel adjustment in the lower Yellow River during the period of clear-water scour. Advances in Water Science, 2001, 12(3): 291-299.
[许炯心. 黄河下游游荡河段清水冲刷时期河床调整的复杂响应现象. 水科学进展, 2001, 12(3): 291-299.]http://d.wanfangdata.com.cn/Periodical/skxjz200103003
[9] Chen Jianguo, Zhou Wenhao, Chen Qiang.Channel re-establishment of the lower Yellow River in ten years operation of Xiaolangdi Reservoir. Journal of Hydraulic Engineering, 2012, 43(2): 127-135.
[陈建国, 周文浩, 陈强. 小浪底水库运用十年黄河下游河道的再造床. 水利学报, 2012, 43(2): 127-135.]
[10] Shi Changxing, Fan Xiaoli, Shao Wenwei, et al.Channel change of the Inner Mongolian reach of the Yellow River and its causes. Geographical Research, 2013, 32(5): 787-796.
[师长兴, 范小黎, 邵文伟, . 黄河内蒙河段河床冲淤演变特征及原因. 地理研究, 2013, 32(5): 787-796.]
[11] Wang Suiji, Li Ling.Lateral shift rate variation of the river banks in the Yinchuan Plain reach of the Yellow River and its causes. Acta Geographica Sinica, 2014, 69(3): 399-408.
[王随继, 李玲. 黄河银川平原段河岸摆动速率变化及原因. 地理学报, 2014, 69(3): 399-408.]
[12] Gong Guoyuan.Channel changes in the Hanjiang river below the Danjiangkou reservoir. Geographical Research, 1982, 1(1): 69-78.
[龚国元. 汉江丹江口水库下游河床演变. 地理研究, 1982, 1(1): 69-78.]
[13] Xu Jiongxin.Complicated response of downstream channel morphology to Danjiangkou Reservoir on Hanjiang River. Chinese Science Bulletin, 1989, 34(6): 450-452.
[许炯心. 汉江丹江口水库下游河床调整过程中的复杂响应. 科学通报, 1989, 34(6): 450-452.]
[14] Zhou Chengcheng, Huang Zhaobiao, Xiong Xiaoyuan, et al.Analysis on changes in the channel erosion/accretion and water level in Jingjiang reach after Three Gorges Reservoir impoundment. China Water Transport, 2014(5): 52-53.
[周成成, 黄召彪, 熊小元, . 三峡水库蓄水后荆江河段河床冲淤及水位变化特点分析. 中国水运, 2014(5): 52-53.]http://d.wanfangdata.com.cn/Conference/8184080
[15] Xia Junqiang, Zong Quanli, Deng Shanshan, et al.Adjustments in reach-scale bankfull channel geometry of Jingjiang reach after operation of Three Gorges Project. Journal of Zhejiang University (Engineering Science), 2015, 49(2): 238-245.
[夏军强, 宗全利, 邓珊珊, . 三峡工程运用后荆江河段平滩河槽形态调整特点. 浙江大学学报(工学版), 2015, 49(2): 238-245.]http://d.wanfangdata.com.cn/Periodical/zjdxxb-gx2015020009
[16] Xue Xinghua, Chang Sheng.River bend planform evolution in Jingjiang reach of the Yangtze since Three Gorges Reservoir operation. Journal of Hydroelectric Engineering, 2017, 36(6): 12-22.
[薛兴华, 常胜. 三峡水库运行后荆江河段河湾平面形态演变特征. 水力发电学报, 2017, 36(6): 12-22.]http://d.wanfangdata.com.cn/Periodical_slfdxb201706002.aspx
[17] Li Ming, Hu Chunhong.Study on processes of braided river downstream of the Three Gorges Reservoir. Journal of Sediment Research, 2017, 42(6): 1-7.
[李明, 胡春宏. 三峡工程运用后坝下游分汊型河道演变与调整机理研究. 泥沙研究, 2017, 42(6): 1-7.]http://d.old.wanfangdata.com.cn/Periodical_nsyj201706001.aspx
[18] Mei Yanguo, Wang Suiji.Variation of mid-channel bars in Linhe braided channel of the Yellow River and its influencing factors. Research of Soil and Water Conservation, 2017, 24(3): 157-163, 169.
[梅艳国, 王随继. 黄河临河辫状河段心滩变化及其影响因素分析. 水土保持研究, 2017, 24(3): 157-163, 169.]http://d.wanfangdata.com.cn/Periodical/stbcyj201703029
[19] Li Zhiwei, Wang Zhaoyin, Jia Yanhong, et al.Evolution analysis of channel bars in the middle and lower Yangtze River before and after impoundment of Three Gorges Reservoir. Resources and Environment in the Yangtze Basin, 2015, 24(1): 65-73.
[李志威, 王兆印, 贾艳红, . 三峡水库蓄水前后长江中下游江心洲的演变及其机理分析. 长江流域资源与环境, 2015, 24(1): 65-73.]http://d.wanfangdata.com.cn/Periodical/cjlyzyyhj201501009
[20] Ran Lishan, Wang Suiji, Fan Xiaoli.Channel change at Toudaoguai Station and its responses to the operation of upstream reservoirs in the upper Yellow River. Journal of Geographical Sciences, 2010, 20(2): 231-247.http://link.springer.com/10.1007/s11442-010-0231-9
[21] Graf W L.Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 2006, 79(3): 336-360.http://linkinghub.elsevier.com/retrieve/pii/S0169555X06002571
[22] Grant G E, Schmidt J C, Lewis S L.A geological framework for interpreting downstream effects of dams on rivers//O'Connor J E, Grant G E. A Peculiar River: Geology, Geomorphology, and Hydrology of the Deschutes River, Oregon. Washington DC: American Geophysical Union, 2003: 203-219.http://onlinelibrary.wiley.com/doi/10.1029/007WS13/summary
DOI: 10.1029/007WS13     
[23] Xu Quanxi, Yuan Jing, Wu Wenjun, et al.Fluvial processes in middle Yangtze River after impoundment of Three Gorges Project. Journal of Sediment Research, 2011, 36(2): 38-46.
[许全喜, 袁晶, 伍文俊, . 三峡工程蓄水运用后长江中游河道演变初步研究. 泥沙研究, 2011, 36(2): 38-46.]
[24] Han Jianqiao, Sun Zhaohua, Huang Ying, et al.Features and causes of sediment deposition and erosion in Jingjiang reach after impoundment of the Three Gorges Project. Journal of Hydraulic Engineering, 2014, 45(3): 277-285, 295.
[韩剑桥, 孙昭华, 黄颖, . 三峡水库蓄水后荆江沙质河段冲淤分布特征及成因. 水利学报, 2014, 45(3): 277-285, 295.]
[25] He Guangshui, Yao Shiming, Jin Zhongwu.Study of atypical erosion of convex bank of river bend in Jingjiang Reach of Yangtze River. Yangtze River, 2011, 42(17): 1-3.
[何广水, 姚仕明, 金中武. 长江荆江河段弯道凸岸边滩非典型冲刷研究. 人民长江, 2011, 42(17): 1-3.]
[26] Xu Quanxi, Zhu Lingling, Yuan Jing.Research on water-sediment variation and deposition-erosion in middle and lower Yangtze River. Yangtze River, 2013, 44(23): 16-21.
[许全喜, 朱玲玲, 袁晶. 长江中下游水沙与河床冲淤变化特性研究. 人民长江, 2013, 44(23): 16-21.]http://d.wanfangdata.com.cn/Periodical/rmcj201323004
[27] Qu Geng, Xu Hui, Tang Wenjian, et al.Morphology variation of different sections in Jingjiang River and its impact on Jingjiang channel condition after TGR operation. Port & Waterway Engineering, 2011(12): 117-122.
[渠庚, 许辉, 唐文坚, . 三峡水库运用后荆江河道断面形态变化及对航道条件的影响. 水运工程, 2011(12): 117-122.]http://d.wanfangdata.com.cn/Periodical/sygc201112025
[28] Zhang Weijun, Wei Lipeng, Qu Geng.Channel evolution of different river patterns in Jingjiang after Three Gorges Project operation. Water Conservancy Science and Technology and Economy, 2013, 19(11): 56-59.
[张卫军, 魏立鹏, 渠庚. 三峡工程运用后荆江不同河型河道演变分析. 水利科技与经济, 2013, 19(11): 56-59.]http://d.wanfangdata.com.cn/Periodical_slkjyjj201311021.aspx
[29] Zhu Lingling, Xu Quanxi, Xiong Ming.Fluvial processes of meandering channels in the lower Jingjiang river reach after the impoundment of Three Gorges Reservior. Advances in Water Science, 2017, 28(2): 193-202.
[朱玲玲, 许全喜, 熊明. 三峡水库蓄水后下荆江急弯河道凸冲凹淤成因. 水科学进展, 2017, 28(2): 193-202.]http://d.wanfangdata.com.cn/Periodical/skxjz201702004
[30] Duan Guanglei, Peng Yanbo, Xiao Hucheng, et al.Preliminary probe into evolvement mechanism of typical shoals at Jingjiang reach of Yangtze River. Hydro-Science and Engineering, 2008(2): 10-15.
[段光磊, 彭严波, 肖虎程, . 长江荆江河段典型洲滩演变机理初探. 水利水运工程学报, 2008(2): 10-15.]
[31] Li Ningbo, Zeng Yong, Wu Zhongming.Preliminary study of causes of mainstream bending of Qigongling bend in Jingjiang reach of Yangtze River. Yangtze River, 2013, 44(1): 22-25.
[李宁波, 曾勇, 吴忠明. 长江荆江河段七弓岭弯道主流撇弯原因初探. 人民长江, 2013, 44(1): 22-25.]
[32] Fan Yongyang, Zhang Wei, Han Jianqiao, et al.The typical meandering river evolution adjustment and its driving mechanism in the downstream reach of TGR. Acta Geographica Sinica, 2017, 72(3): 420-431.
[樊咏阳, 张为, 韩剑桥, . 三峡水库下游弯曲河型演变规律调整及其驱动机制. 地理学报, 2017, 72(3): 420-431.]http://d.wanfangdata.com.cn/Periodical_dlxb201703005.aspx
[33] Yang Fangli, Huang Wei, Fu Zhongmin, et al.River evolution and waterway regulation of Zhijiang-Jiangkou section at midstream of the Yangtze River. Port & Waterway Engineering, 2012(10): 24-29.
[杨芳丽, 黄伟, 付中敏, . 长江中游枝江—江口河段河床演变与航道整治思路. 水运工程, 2012(10): 24-29.]http://d.wanfangdata.com.cn/Periodical_sygc201210005.aspx
[34] Xue X H, Yuan L Y.Study on the fluvial landscape patterns of upper Jingjiang segment, Yangtze River, using multi-temporal remote-sensing imageries//2013 Fifth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Washington DC: IEEE Computer Society, 2013.
[35] Mei Yanguo, Wang Suiji.Variation of channel lateral erosion/accretion and channel shrinkage rate in the Linhe reach of the Yellow River since 1977. Acta Geographica Sinica, 2016, 71(9): 1509-1519.
[梅艳国, 王随继. 1977年以来黄河临河段河岸冲淤变化及河道萎缩速率. 地理学报, 2016, 71(9): 1509-1519.]研究点分析
[36] Sun Zhaohua, Li Yitian, Li Ming, et al.Effect of channel degradation on lower level in Yichang-Shashi reach in the Yangtze River. Hydro-Science and Engineering, 2007(4): 14-20.
[孙昭华, 李义天, 李明, . 长江中游宜昌—沙市段河床冲淤与枯水位变化. 水利水运工程学报, 2007(4): 14-20.]
[37] Han Qiwei, Yang Kecheng.The tendency of river pattern variation in the lower Jingjiang river after completion of the Three Gorges Project. Journal of Sediment Research, 2000(3): 1-11.
[韩其为, 杨克诚. 三峡水库建成后下荆江河型变化趋势的研究. 泥沙研究, 2000(3): 1-11.]
[38] Yang Yunping, Zhang Mingjin, Li Yitian, et al.Suspended sediment recovery and bedsand compensation mechanism affected by the Three Gorges Project. Acta Geographica Sinica, 2016, 71(7): 1241-1254.
[杨云平, 张明进, 李义天, . 长江三峡水坝下游河道悬沙恢复和床沙补给机制. 地理学报, 2016, 71(7): 1241-1254.]http://d.wanfangdata.com.cn/Periodical/dlxb201607012
[39] Yin Ruilan, Chen Li.Study on the trends of Jingjiang river evolution caused by the downstream scour of the Three Gorges Project. Journal of Sediment Research, 2003(6): 1-6.
[殷瑞兰, 陈力. 三峡坝下游冲刷荆江河段演变趋势研究. 泥沙研究, 2003(6): 1-6.]
[40] Langbein W B, Leopold L B.River meanders and the theory of minimum variance//Dury G H. Rivers and River Terraces. London: Palgrave Macmillan UK, 1970: 238-263.
[41] Han Jianqiao, Sun Zhaohua, Cao Qixin, et al.Features and effects of recent cross-section adjustment in gravel and sand bed reaches of Jingjiang river. Journal of Hydroelectric Engineering, 2015, 34(4): 91-97.
[韩剑桥, 孙昭华, 曹绮欣, . 近期荆江沙卵石—沙质河床过渡带断面调整特性及影响. 水力发电学报, 2015, 34(4): 91-97.]
[1] 朱玲玲,杨霞,许全喜. 上荆江枯水位对河床冲刷及水库调度的综合响应[J]. 地理学报, 2017, 72(7): 1184-1194.
[2] 樊咏阳,张为,韩剑桥,余梦清. 三峡水库下游弯曲河型演变规律调整及其驱动机制[J]. 地理学报, 2017, 72(3): 420-431.
[3] 杨云平,张明进,李义天,张为,由星莹,朱玲玲,王冬. 长江三峡水坝下游河道悬沙恢复和床沙补给机制[J]. 地理学报, 2016, 71(7): 1241-1254.
[4] 周永强, 李景保, 张运林, 章新平, 黎昔春. 三峡水库运行下洞庭湖盆冲淤过程响应与水沙调控阈值[J]. 地理学报, 2014, 69(3): 409-421.
[5] 李景保, 张照庆, 欧朝敏, 黎昔春, 余果, 廖小红. 三峡水库不同调度方式运行期洞庭湖区的水情响应[J]. 地理学报, 2011, 66(9): 1251-1260.
[6] 戴仕宝, 杨世伦, 李鹏. 长江干流河道对流域输沙的调节作用[J]. 地理学报, 2006, 61(5): 461-470.
[7] 卞鸿翔, 龚循礼. 洞庭湖区围垦问题的初步研究[J]. 地理学报, 1985, 52(2): 131-141.
[8] 高善明. 对滦河三角洲一些补充和再认识[J]. 地理学报, 1982, 49(4): 424-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发