Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1687-1701     DOI: 10.11821/dlxb201809006
  地表过程 本期目录 | 过刊浏览 | 高级检索 |
短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应
张结1,2(),周忠发1,2(),汪炎林1,3,潘艳喜1,3,薛冰清1,3,张昊天1,2,田衷珲1,2
1. 贵州师范大学喀斯特研究院/地理与环境科学学院,贵阳 550001
2. 贵州省喀斯特山地生态环境国家重点实验室培育基地,贵阳 550001
3. 国家喀斯特石漠化防治工程技术研究中心,贵阳 550001
Variation of CO2 and its response to the drip hydrogeochemistry in caves under the short-time high-strength tourism activities
ZHANG Jie1,2(),ZHOU Zhongfa1,2(),WANG Yanlin1,3,PAN Yanxi1,3,XUE Bingqing1,3,ZHANG Haotian1,2,TIAN Zhonghui1,2
1. School of Karst Science/College of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China
2. The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
3. State Engineering Technology Center of Karst Rock Desertification Rehabilitation, Guiyang 550001, China
全文: PDF (4652 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

洞穴高强度旅游活动产生的CO2对洞穴滴水水文地球化学及洞穴沉积物沉积具有重要影响。本文于2017年9月30日-10月9日对贵州绥阳大风洞洞穴CO2、温度、相对湿度、游客数量及洞穴滴水水化学指标等进行连续监测,运用系统分析方法对各要素进行综合分析。结果发现:① 受游客数量和洞穴通风效应等因素影响,洞穴空气CO2分压(PCO2(A))在时间序列上呈现明显的昼夜变化和日际变化,表现为白昼高、夜间低,游客多的天数高,游客少的天数低。在空间变化上,由于通风程度和洞腔体积不同,不同监测点PCO2(A)存在明显差异,由洞内深处至洞口分别为3#(神泉玉露)>1#(时光隧道)>2#(夜明珠);② 通过比较PCO2(A)和滴水水温,前者对CO2溶解度影响比后者更为显著,表明PCO2(A)是洞穴沉积过程中最重要的驱动因素之一;③ 洞穴滴水水温、滴水PCO2分压(PCO2(W))与PCO2(A)变化趋势大体一致,也呈现出明显的昼夜变化和日际变化。pH、SIc和HCO3-变化趋势大体上与PCO2(A)相反,EC和Ca2+则无明显的昼夜变化,但存在一定的日际变化。随着旅游活动强度的增加,滴水水化学变化幅度逐渐增大。此外,不同滴水点所在洞腔结构、大小、封闭程度等不同,使PCO2(A)的扩散和通风程度存在差异,进而影响洞穴滴水水化学组分和洞穴沉积物沉积状况。因此,本研究对于洞穴环境保护和管理及其岩溶洞穴碳循环的研究具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张结
周忠发
汪炎林
潘艳喜
薛冰清
张昊天
田衷珲
关键词 人为二氧化碳短时间尺度高强度旅游活动洞穴滴水水文地球化学大风洞 
Abstract

The presence of CO2 in the caves affected by intense tourism activities has a significant impact on the drip hydrogeochemistry and sedimentation. In this investigation, a continuous monitoring on the indexes such as CO2, temperature, relative humidity, tourist number and drip hydrochemistry was conducted in Guizhou Suiyang Dafeng Cave from 30 September 2017 to 9 October 2017. Following the collection of data, different methods were applied systematically to analyze a number of elements comprehensively. The observed results show that, under the influence of factors such as tourist number and ventilation effect of cave, the partial pressure of CO2 in the cave (PCO2 (A)) presented obvious diurnal and interdiurnal variations in the time sequence, and showed a higher value in daytime whereas a lower value at nighttime, and also a higher value on days with many tourists and a lower value on days with few tourists. In space variation, due to different ventilation degrees and cavity volumes, the PCO2(A) of different monitoring points had obvious differences, from the deep cave to the entrance of cave as 3# (Magical Spring and Dewdrop) >1# (Time Tunnel)>2# (Legendary Luminous Pearl). Through the comparison of PCO2(A) and drip temperature, the former had more significant influence on the solubility of CO2 than the latter did. Moreover, the drip temperature and drip partial pressure of CO2 (PCO2(W)) of cave generally had the same trend of variation with that of PCO2(A), and also presented obvious diurnal and interdiurnal variations. The pH, SIc, and HCO3- generally had a trend of variation in the opposite way to that of PCO2 (A), EC and Ca2+ had no obvious diurnal variation but certain interdiurnal variation. With an increase in the strength of tourism activities, the variation amplitude of drip hydrochemistry gradually increased. Furthermore, the differences in the factors such as cavity structure, size and closeness caused differences in the diffusion speed of PCO2(A) and cave ventilation degree, and further influenced the hydrochemistry of the constituents of cave drip and sedimentation conditions of cave. Overall, this study will have a significant impact on the research on protection and management of cave environment as well as its karst cave carbon cycle.

Key wordsanthropogenic CO2    short-time scale    high intensity tourism activity    cave drip water    hydrogeochemistry    Dafeng Cave
收稿日期: 2018-01-02      出版日期: 2018-09-19
基金资助:国家自然科学基金项目(41361081, 41661088);贵州师范大学博士科研项目资助(GZNUD[2017]6号);贵州省高层次创新型人才培养计划(黔科合平台人才[2016]5674);国家遥感中心贵州分部平台建设(黔科合Z字[2012]4003)
引用本文:   
张结, 周忠发, 汪炎林等 . 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018, 73(9): 1687-1701.
ZHANG Jie, ZHOU Zhongfa, WANG Yanlin et al . Variation of CO2 and its response to the drip hydrogeochemistry in caves under the short-time high-strength tourism activities[J]. Acta Geographica Sinica, 2018, 73(9): 1687-1701.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809006      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1687
Fig. 1  研究区概况图
Fig. 2  大风洞监测点分布示意图
Fig. 3  大风洞不同监测点CO2浓度短时间尺度变化
Fig. 4  游客在洞内滞留和游客出洞后CO2的变化趋势
Fig. 5  2#和3#滴水点水文地球化学特征
Fig. 6  游客进入洞穴期间空气CO2浓度的演变过程[5]
Fig. 7  监测期间大风洞洞穴通风模式图
Fig. 8  洞内外虚拟温度差(△Tv)
Fig. 9  PCO2(A)与洞穴滴水水文地球化学指标的关系
Fig. 10  洞穴CO2对洞内环境影响的概念模型
[1] Fairchild I J, Baker A.Speleothem Science: From Process to Past Environments. Chichester: John Wiley & Sons, 2012: 416.http://onlinelibrary.wiley.com/book/10.1002/9781444361094?globalMessage=0
[2] James E W, Banner J L, Hardt B.A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochemistry Geophysics Geosystems, 2015, 16(4): 1-12.http://doi.wiley.com/10.1002/2014GC005554
[3] Peyraube N, Lastennet R, Villanueva J D, et al.Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using CO2 assessment. Theoretiacl and Applied Climatology, 2017, 129(3/4): 1045-1058.http://link.springer.com/10.1007/s00704-016-1824-8
[4] Song L H, Wang J, Liang F Y, et al.Effect of human and natural factors on the environment of show caves. Carsologica Sinica, 2004, 23(2): 91-99.http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR200402002.htm
DOI: 10.1007/BF02911025     
[5] Lang M, Faimon J, Pracný P, et al.A show cave management: Anthropogenic CO2 in atmosphere of Výpustek Cave (Moravian Karst, Czech Republic). Journal for Nature Conservation, 2017, 35: 40-52.https://linkinghub.elsevier.com/retrieve/pii/S1617138116302254
[6] Lario J, Soler V.Microclimate monitoring of Pozalagua Cave (Vizcaya, Spain): Application to management and protection of show caves. Journal of Cave and Karst Studies, 2010, 72(3): 169-180.http://www.caves.org/pub/journal/PDF/v72/cave-72-03-169.pdf
[7] Calaforra J M, Fernández-Cortés A, Sánchez-Martos F, et al.Environmental control for determining human impact and permanent visitor capacity in a potential show cave before tourist use. Environmental Conservation, 2003, 30(2): 160-167.http://www.journals.cambridge.org/abstract_S0376892903000146
[8] Cigna A A.An analytical study of air circulation in caves. International Journal of Speleology, 1968, 3(1): 41-54.http://scholarcommons.usf.edu/ijs/
DOI: 10.5038/1827-806X     
[9] Banner J L, Guilfoyle A, James E W, et al.Seasonal variations in modern speleothem calcite growth in Central Texas USA. Journal of Sedimentary Research, 2007, 77: 615-622.https://pubs.geoscienceworld.org/jsedres/article/77/8/615-622/145159
[10] Wang Aoyu, Pu Junbing, Shen Licheng, et al.Natural and human factors of CO2 concentration variations in Xueyu Cave, Chongqing. Tropical Geography, 2010, 30(3): 272-277.
[王翱宇, 蒲俊兵, 沈立成, . 重庆雪玉洞CO2浓度变化的自然与人为因素探讨. 热带地理, 2010, 30(3): 272-277.]
[11] Faimon J, Ličbinská M, Zajíček P.Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. International Journal of Speleology, 2012, 41(1): 17-28.
[12] Faimon J, Ličbinská M.Carbon dioxide in the soils and adjacent caves of the Moravian Karst. Acta Carsologica, 2010, 39(3): 463-475.http://www.muni.cz/research/publications/918483?show_list=103
DOI: 10.3986/ac.v39i3.76     
[13] Faimon J, Ličbinská M, Zajíček P, et al.Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst Czech Republic. Acta Carsologica, 2012, 41(1): 47-57.
[14] Holland H D, Kirsipu T V, Huebner J S, et al.On some aspects of the chemical evolution of cave water. Journal of Geology, 1964, 72(1): 36-67.https://www.journals.uchicago.edu/doi/10.1086/626964
DOI: 10.1086/626964     
[15] Lang M, Faimon J, Ek C.A case study of anthropogenic impact on the CO2 levels in low-volume profile of the Balcarka Cave (Moravian Karst, Czech Republic). Acta Carsologica, 2015, 44(1): 71-80.
[16] Faimon J, Štelcl J, Sas D.Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císarská Cave (Moravian Karst, Czech Republic). Science of the Total Environment, 2006, 369(1-3): 231-245.http://linkinghub.elsevier.com/retrieve/pii/S0048969706002932
[17] Lang M, Faimon J, Godissart J, et al.Carbon dioxide seasonality indynamic caves: The roles of ventilation modes and advective fluxes. Theoretical and Applied Climatology, 2017, 129(3/4): 1355-1372.http://link.springer.com/10.1007/s00704-016-1858-y
[18] Fernández-Cortes A, Sanchez-Moral S, Cuezva S, et al.Annual and transient signatures of gas exchange and transport in the Castañar de Ibor Cave (Spain). International Journal of Speleology, 2009, 38(2): 153-162.http://scholarcommons.usf.edu/ijs/
DOI: 10.5038/1827-806X     
[19] Spötl C, Fairchild I J, Tooth A F.Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.http://linkinghub.elsevier.com/retrieve/pii/S001670370400969X
[20] Faimon J, Troppová D, Baldík V, et al.Air circulation andits impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). International Journal of Climatology, 2012, 32(4): 599-623.http://doi.wiley.com/10.1002/joc.v32.4
DOI: 10.1002/joc.v32.4     
[21] Ban Fengmei, Cai Binggui.Research on seasonal variations of the air's main environmental factors in the Shihua Cave, Beijing. Carsologica Sinica, 2011, 30(2): 132-137.
[班凤梅, 蔡炳贵. 北京石花洞空气环境主要因子季节性变化特征研究. 中国岩溶, 2011, 30(2): 132-137.]http://d.wanfangdata.com.cn/Periodical/zgyr201102003
[22] Cai Binggui, Shen Linmei, Zheng Wei, et al.Spatial distribution and diurnal variationin CO2 concentration, temperature and relative humidity of the cave air: A case study from Water Cave, Benxi, Liaoning, China. Carsologica Sinica, 2009, 28(4): 348-354.
[蔡炳贵, 沈凛梅, 郑伟, . 本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征. 中国岩溶, 2009, 28(4): 348-354.]
[23] Zhang Ping, Yang Yan, Sun Zhe, et al.Comparisons between seasonal and diurnal patterns of cave air CO2 and control factors in Jiguan Cave, Henan Province, China. Environmental Science, 2017, 38(1): 60-69.
[张萍, 杨琰, 孙喆, . 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较. 环境科学, 2017, 38(1): 60-69.]http://d.wanfangdata.com.cn/Periodical/hjkx201701007
[24] He Haibo, Tang Jing, Liu Shuhua, et al.Spatial and temporal variation of environments and influencing factors in Loufang Cave, northeast of Sichuan Province. Tropical Geography, 2014, 34(5): 696-703.
[贺海波, 汤静, 刘淑华, . 川东北楼房洞洞穴环境时空变化与影响因素. 热带地理, 2014, 34(5): 696-703.]
[25] Tong Xiaoning, Zhou Houyun, Huang Ying, et al.Spatio-temporal variation of air CO2 concentration in Baojinggong Cave, Guangdong, China. Tropical Geography, 2013, 33(4): 439-443.
[童晓宁, 周厚云, 黄颖, . 广东英德宝晶宫CO2浓度的时空变化特征. 热带地理, 2013, 33(4): 439-443.]http://d.wanfangdata.com.cn/Periodical/rddl201304010
[26] Pan Yanxi, Zhou Zhongfa, Li Po, et al.Characteristics of spatial temporal variation of air environment in tourism cave and its cause analysis: A case study of the Dafeng Cave in Suiyang County, Guizhou Province. Carsologica Sinica, 2016, 35(4): 425-431.
[潘艳喜, 周忠发, 李坡, . 旅游洞穴空气环境时空变化特征及其影响因素: 以贵州省绥阳大风洞为例. 中国岩溶, 2016, 35(4): 425-431.]
[27] Zhou Changchun, Wang Xiaoqing, Sun Xiaoyin, et al.A test analysis of environmental changes of tourism karst caves and study on influencing factors: A case of Jiutian Cave in Yiyuan County, Shandong Province. Tourism Tribune, 2009, 24(2): 81-86.
[周长春, 王晓青, 孙小银, . 旅游洞穴环境变化监测分析及其影响因素研究: 以山东沂源九天洞为例. 旅游学刊, 2009, 24(2): 81-86.]
[28] Song Linhua, Wei Xiaoning, Liang Fuyuan.Effect of speleo-tourism on the CO2 content and temperature in Baiyun Cave, Lincheng, Hebei. Carsologica Sinica, 2003, 22(3): 230-235.
[宋林华, 韦小宁, 梁福源. 河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响. 中国岩溶, 2003, 22(3): 230-235.]http://d.wanfangdata.com.cn/Periodical/zgyr200303010
[29] Song Linhua, Yang Jingrong, Lin Junshu, et al.Dynamically of absorbing CO2 in the recovering experiment of weathered speleothem in Yaolin Cave, Zhejiang, China. Carsologica Sinica, 1999, 18(4): 297-307.
[宋林华, 杨京蓉, 林钧枢, . 浙江瑶琳洞风化碳酸钙景观复生试验中CO2吸收动力学研究. 中国岩溶, 1999, 18(4): 297-307.]http://d.wanfangdata.com.cn/Periodical/zgyr199904002
[30] Pu J B, Wang A Y, Yin J J, et al.PCO2 variations of cave air and cave water in a subtropical cave, SW China. Carbonates Evaporites, 2017: 1-11.http://link.springer.com/10.1007/s13146-017-0359-0
[31] Pracný P, Faimon J, Kabelka L, et al.Variations of carbon dioxide in the air and dripwaters of Punkva Caves (Moravian Karst, Czech Republic). Carbonates Evaporites, 2016, 31(4): 375-386.http://link.springer.com/10.1007/s13146-015-0259-0
[32] Cao Mingda, Zhou Zhongfa, Zhang Jie, et al.Effects of partial pressure of CO2 of water/gas on hydrochemical process of cave water: a case study indolomite cave system of shuanghe cave in Guizhou province. Environmental Science & Technology, 2017, 40(3): 54-60.
[曹明达, 周忠发, 张结, . 白云岩洞穴系统中水—气CO2分压对洞穴水水文化学过程的影响: 以贵州双河洞为例. 环境科学与技术, 2017, 40(3): 54-60.]
[33] Wang X X, Wu Y H, Shen L C.Influences of air CO2 on hydrochemistry of drip waterand implications for paleoclimate study in a stream-developed cave, SW China. Acta Geochimica, 2016, 35(2): 172-183.http://link.springer.com/10.1007/s11631-015-0085-z
[34] Pu J B, Yuan D X, Zhao H P, et al.Hydrochemical and PCO2 variations of a cave streamin a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO2 and buffer effects. Environmental Earth Science, 2014, 71(9): 4039-4049.http://link.springer.com/10.1007/s12665-013-2787-z
[35] Wong C I, Banner J L, Musgrove M.Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records. Geochimica et Cosmochimica Acta, 2011, 75(12): 3514-3529.http://linkinghub.elsevier.com/retrieve/pii/S0016703711001827
[36] Baldini J U L, Mc Dermot F, Hoffmann D L, et al. Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimaterecords. Earth and Planetary Science Letters, 2008, 272(1/2): 118-129.http://linkinghub.elsevier.com/retrieve/pii/S0012821X08002690
[37] Deininger M, Fohlmeister J, Scholz D, et al.Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems: A model approach. Geochimica et Cosmochimica Acta, 2012, 96(11): 57-79.http://linkinghub.elsevier.com/retrieve/pii/S0016703712004681
[38] White W B.Geomorphology and Hydrology of Karst Terrains. New York: Oxford University Press, 1988.
[39] Milanolo S, Gabrovšek F.Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave: Bosna and Herzegovina. Boundary-Layer Meteorology, 2009, 131(3): 479-493.http://link.springer.com/10.1007/s10546-009-9375-5
[40] Liñán C, Vadillo I, Carrasco F.Carbon dioxide concentration in air within the Nerja Cave (Malaga, andalusia, Spain). International Journal of Speleology, 2008, 37(2): 99-106.http://scholarcommons.usf.edu/ijs/
[41] Chen Jiangeng, Zhang Yingjun.Formation and development of Shuanghe Cave System, Suiyang, Guizhou. Carsologica Sinica, 1994, 13(3): 247-255.
[陈建庚, 张英骏. 贵州绥阳双河洞系的发育与成因探讨. 中国岩溶, 1994, 13(3): 247-255.]
[42] Li Po, He Wei, Qian Zhi, et al.Shuanghe Cave Geopark Research. Guiyang: Guizhou People's Publishing House, 2008: 58-101.
[李坡, 贺卫, 钱治, . 双河洞地质公园研究. 贵阳: 贵州人民出版社, 2008: 58-101.]
[43] Sánchez-Cañete E P, Serrano-Ortiz P, Domingo F, et al. Cave ventilation is inf luenced by variations in the CO2 -dependent virtual temperature. International Journal of Speleology, 2013, 42(1): 1-8.http://scholarcommons.usf.edu/ijs/
[44] Milanolo S, Gabrovšek F.Estimation of carbon dioxide flux degassing from percolating waters in a karst cave: Case study from Bijambare Cave, Bosnia and Herzegovina. Chemie der Erde, 2015, 75(4): 465-474.https://linkinghub.elsevier.com/retrieve/pii/S0009281915300131
[45] Chen Lin, Huang Jiayi, Liu Shuhua, et al.Spatial and temporal variation of environments of Baojinggong Cave, Guangdong Province, China and it's influencing factors. Earth and Environment, 2017, 45(2): 164-170.
[陈琳, 黄嘉仪, 刘淑华, . 广东英德宝晶宫洞穴微环境时空变化特征及其主要影响因素探究. 地球与环境, 2017, 45(2): 164-170.]研究点分析
[46] Benavente J, Vadillo I, Liñan C, et al.Ventilation effects in a karstic show cave and in its vadose environment, Nerja, southern Spain. Carbonates Evaporites, 2011, 26(1): 11-17.http://link.springer.com/10.1007/s13146-011-0050-9
[47] Breitenbach S F M, Lechleitner F A, Meyer H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting: A monitoring study from NE India. Chemical Geology, 2015, 402: 111-124.http://linkinghub.elsevier.com/retrieve/pii/S000925411500145X
[48] Ridley H E, Prufer K M, Walczak I W, et al.High-resolution monitoring of Yok Balum Cave, Belize: An investigation of seasonal ventilation regimes and the atmospheric and drip-flow response to a local earthquake. Journal of Cave and Karst Studies, 2015, 77(3): 183-199.http://caves.org/pub/journal/PDF/v77/cave-77-03-183.pdf
DOI: 10.4311/2014ES0117     
[49] Cowan B D, Osborne M C, Banner J L, et al.Temporal variability of cave-air CO2 in central Texas. Journal of Cave and Karst Studies, 2013, 75(1): 38-50.http://www.researchgate.net/publication/272651928_Temporal_Variability_of_Cave-Air_CO2_in_Central_Texas
DOI: 10.4311/2011ES0246     
[50] Mattey D P, Atkinson T C, Barker J A, et al.Carbon dioxide, ground air and carbon cycling in Gibraltar karst. Geochimica et Cosmochimica Acta, 2016, 184: 88-113.https://linkinghub.elsevier.com/retrieve/pii/S001670371630028X
[51] Baldini J U L, Baldini L M, Mc Dermott F, et al. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland. Journal of Cave and Karst Studies, 2006, 68(1): 4-11.
[52] Vieten R, Winter A, Warken S F, et al.Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico. International Journal of Speleology, 2016, 45(3): 259-273.http://scholarcommons.usf.edu/ijs/
DOI: 10.5038/1827-806X     
[53] Wang Jing, Song Linhua, Xiang Changguo, et al.The impact of the soil CO2 concentration under different types of vegetation on landscape in caves. Geographical Research, 2004, 23(1): 71-77.
[王静, 宋林华, 向昌国, . 不同植被类型覆盖下土壤CO2浓度对洞穴景观的影响. 地理研究, 2004, 23(1): 71-77.]
[54] Wang Jing.The effect of tourist activities on the speleothems and conservation strategy in the show caves. Resources Science, 2006, 28(5): 140-144.
[王静. 旅游活动对溶洞碳酸钙沉积景观影响及保护性研究. 资源科学, 2006, 28(5): 140-144.]http://d.wanfangdata.com.cn/Periodical/zykx200605022
[55] Ford D, Williams P.Karst Geomorphology and Hydrology. London: Unwin Hyman, 1989: 50-95.
[56] Boch R, Spötl C, Risia S.Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria. Sedimentology, 2011, 58(2): 508-531.http://doi.wiley.com/10.1111/sed.2011.58.issue-2
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发