Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1658-1673     DOI: 10.11821/dlxb201809004
  土地利用 本期目录 | 过刊浏览 | 高级检索 |
撂荒耕地的提取与分析——以山东省庆云县和无棣县为例
肖国峰1,2,3,4(),朱秀芳2,3,4(),侯陈瑶4,夏兴生4
1. 北京师范大学环境遥感与数字城市北京市重点实验室,北京100875
2. 北京师范大学地表过程与资源生态国家重点实验室,北京 100875
3. 北京市陆表遥感数据产品工程技术研究中心,北京 100875
4. 北京师范大学地理科学学部遥感科学与工程研究院,北京 100875
Extraction and analysis of abandoned farmland: A case study of Qingyun and Wudi counties in Shandong Province
XIAO Guofeng1,2,3,4(),ZHU Xiufang2,3,4(),HOU Chenyao4,XIA Xingsheng4
1. Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing Normal University, Beijing 100875, China
2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
3. Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Beijing Normal University, Beijing 100875, China
4. Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
全文: PDF (6472 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

由于城镇化的快速发展和农村劳动力不断流失,中国部分地区出现大面积的撂荒现象。利用遥感技术可以间接提取撂荒耕地的规模和数量,对耕地的保护和粮食安全有重要意义。以山东省庆云县和无棣县为研究区,基于Landsat数据和HJ1A数据,采用CART决策树分类方法,制作了1990-2017年的土地利用图,制定了撂荒地的识别规则,在此基础之上提取了研究区的撂荒地空间分布、持续撂荒时间分布和撂荒地复垦区域。结果显示:1990-2017年基准期影像的CART决策树分类精度高于85%;1992-2017年间,研究区撂荒地面积最大值为5503.86 hm2,最大撂荒率为5.37%,其中1996-1998年撂荒率最高,2006-2017年撂荒地面积的整体趋势逐年降低;1992-2017年间最大持续撂荒时间为15年,大部分耕地持续撂荒时间在4年之内,少数耕地持续撂荒时间超过10年;1993-2017年撂荒耕地复垦面积最大为2022.3 hm2,最小复垦面积约为20 hm2,复垦率最大值为67.44%,年均复垦率为31.83%。研究结果不仅能够为研究区撂荒驱动因素分析提供数据支撑,而且也可以为其他地区的撂荒耕地识别提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖国峰
朱秀芳
侯陈瑶
夏兴生
关键词 CART撂荒复垦耕地山东省Landsat数据 
Abstract

With the rapid development of urbanization and the continuous loss of the rural labor force, large areas of farmland have been abandoned in some regions of China. Remote sensing technology can indirectly help to detect the size and quantity of abandoned farmland, which is of great significance for the protection of farmland and food security. Using Qingyun and Wudi counties of Shandong Province as the study area, and based on the Landsat data and HJ-1A data, this paper uses the CART decision tree classification method to develop land use maps from 1990 to 2017, set down rules to identify abandoned farmland, and explore the spatial distribution, duration, and reclamation area of abandoned farmland. The results showed that the accuracy of the CART decision tree classification was higher than 85% from 1990 to 2017. The maximum abandoned farmland area was 5503.86 hm2 from 1992 to 2017, and the maximum abandonment rate was 5.37%. The rate of farmland abandonment reached the peak from 1996 to 1998, and the overall trend of abandonment has decreased year by year after 2006. The maximum duration of abandonment was 15 years during the period of 1992 to 2017. Most of the durations were within four years and a few durations were more than ten years. From 1993 to 2017, the maximum reclamation area of abandoned farmland was 2022.3 hm2, and the minimum reclamation area was about 20 hm2. The maximum reclamation rate was 67.44% and the annual average reclamation rate was 31.83%. The results from this paper not only help analyze the driving forces of farmland abandonment in the study area, but also provide references for the identification of abandoned farmland in other areas.

Key wordsCART    abandonment    reclamation    farmland    Shandong Province    Landsat data
收稿日期: 2018-03-05      出版日期: 2018-09-19
基金资助:国家“高分辨率对地观测系统”重大专项;国家自然科学基金青年基金项目(41401479)
引用本文:   
肖国峰, 朱秀芳, 侯陈瑶等 . 撂荒耕地的提取与分析——以山东省庆云县和无棣县为例[J]. 地理学报, 2018, 73(9): 1658-1673.
XIAO Guofeng, ZHU Xiufang, HOU Chenyao et al . Extraction and analysis of abandoned farmland: A case study of Qingyun and Wudi counties in Shandong Province[J]. Acta Geographica Sinica, 2018, 73(9): 1658-1673.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809004      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1658
Fig. 1  研究区地理位置
年份 时期(月、日) 基准
时期
分类精度 年份 时期(月、日) 基准
时期
分类精度
时期1 时期2 时期1(%) 时期2(%) 时期1 时期2 时期1(%) 时期2(%)
1990 0506 0911 0911 92.5 94.2 2004 0528 1003 1003 87.5 89.1
1991 0509 1006 0509 90.3 84.3 2005 0515 0904 0904 87.7 89.9
1992 0527 1018 1018 91.7 91.8 2006 0502 0907 0907 89.1 90.4
1993 0514 0903 0903 86.0 92.1 2007 0505 0809 0809 84.0 90.9
1994 0517 0906 0517 92.6 91.4 2008 0608 0827 0827 84.2 88.3
1995 0504 0824 0504 93.7 88.4 2009 0526 0830 0830 86.9 89.2
1996 0522 1013 0522 86.4 83.5 2010 0427 0614 0427 90.1 86.4
1997 0423 1016 1016 85.3 88.7 2011 0516 0820 0820 86.8 86.9
1998 0528 0629 0629 85.2 85.2 2012 0527 0928 0928 89.6 90.2
1999 0429 0803 0803 90.4 92.4 2013 0521 0825 0825 84.1 91.1
2000 0501 0906 0906 85.3 88.6 2014 0508 0929 0929 86.5 90.9
2001 0418 0909 0909 87.0 92.2 2015 0425 0815 0815 87.9 90
2002 0710 1014 0710 91.7 86.4 2016 0513 1004 0513 91.4 84.2
2003 0627 0915 0915 88.8 91.1 2017 0516 1023 1023 91.5 91.4
Tab. 1  影像获取时间及分类结果精度
Fig. 2  技术路线图
Fig. 3  耕地提取示意图
注:绿色表示耕地;黄色表示裸地;蓝色表示水体;红色表示建设用地
Fig. 4  决策树(B1-B7分别对应合成影像的7个波段)
Fig. 5  庆云县和无棣县土地利用分类结果图
Fig. 6  庆云县和无棣县撂荒地分布图
年份 撂荒面积(hm2) 撂荒率(%) 年份 撂荒面积(hm2) 撂荒率(%)
1992 3526.74 3.44 2005 2564.73 2.50
1993 2355.03 2.30 2006 3287.61 3.21
1994 286.47 0.28 2007 2998.8 2.92
1995 650.34 0.63 2008 2850.75 2.78
1996 4372.47 4.26 2009 1851.66 1.81
1997 5503.86 5.37 2010 1307.16 1.27
1998 5288.40 5.16 2011 1519.11 1.48
1999 2255.31 2.20 2012 2418.12 2.36
2000 1097.01 1.07 2013 341.46 0.33
2001 628.02 0.61 2014 292.59 0.29
2002 842.04 0.82 2015 1285.74 1.25
2003 356.31 0.35 2016 226.44 0.22
2004 650.43 0.63 2017 263.97 0.26
Tab. 2  1992-2017年庆云县和无棣县撂荒地统计结果
Fig. 7  庆云县和无棣县撂荒地持续时间分布图
持续撂荒时间(年) 撂荒面积(hm2) 持续撂荒时间(年) 撂荒面积(hm2) 持续撂荒时间(年) 撂荒面积(hm2)
1 11183.67 6 501.21 11 17.64
2 5278.32 7 288.9 12 8.46
3 2846.25 8 159.21 13 4.5
4 1587.15 9 82.26 14 1.44
5 910.17 10 40.86 15 0.99
Tab. 3  庆云县和无棣县持续撂荒时间段内的撂荒地面积
Fig. 8  庆云县和无棣县撂荒地复垦图
Fig. 9  庆云县和无棣县撂荒耕地和复垦耕地年际面积变化统计结果
年份 复垦面积(hm2) 复垦率(%) 年份 复垦面积(hm2) 复垦率(%)
1993 1607.31 45.57 2006 431.28 16.82
1994 1539.09 65.35 2007 603.72 18.36
1995 89.10 31.10 2008 2022.30 67.44
1996 217.08 33.38 2009 1252.89 43.95
1997 1063.80 24.33 2010 281.79 15.22
1998 852.30 15.49 2011 141.66 10.84
1999 1010.52 19.11 2012 759.15 49.97
2000 1381.68 61.26 2013 1056.69 43.70
2001 266.49 24.29 2014 19.17 5.61
2002 28.98 4.61 2015 20.52 7.01
2003 400.68 47.58 2016 354.78 27.59
2004 183.69 51.55 2017 99.36 43.88
2005 141.30 21.72
Tab. 4  1993-2017年庆云县和无棣县撂荒地复垦统计结果
[1] Li Xiubin, Zhao Yuluan.Forest transition, agricultural land marginalization and ecological restoration. China Population Resources and Environment, 2011, 21(10): 91-95.
[李秀彬, 赵宇鸾. 森林转型、农地边际化与生态恢复. 中国人口·资源与环境, 2011, 21(10): 91-95.]http://d.wanfangdata.com.cn/Periodical_zgrkzyyhj201110015.aspx
[2] Huang Limin, Zhang Anlu, Liu Chengwu.Research on the agriculture land abandoning and its quantitative description. Journal of Xianning University, 2008(3): 113-116, 121.
[黄利民, 张安录, 刘成武. 耕地撂荒及其定量分析. 咸宁学院学报, 2008(3): 113-116, 121.]
[3] Qi Manhua.Current situation and countermeasures of farmland protection in China. Agriculture & Technology, 2009, 29(3): 1-3.
[齐曼华. 我国耕地保护现状及对策研究. 农业与技术, 2009, 29(3): 1-3.]http://d.wanfangdata.com.cn/Periodical/nyyjs200903001
[4] Hou Yuankai, Duan Shaoguang, Zhao Shui.Main Tree Species for Conversion of Cropland to Forest in China. Beijing: China Agricultural Press, 2004.
[侯元凯, 段绍光, 赵水. 中国退耕还林主要树种(北方本). 北京: 中国农业出版社, 2004.]
[5] Shi Tiechou.Research on farmland abandonment scale and influencing factors in Chongqing mountain area [D]. Beijing: University of Chinese Academy of Sciences, 2015.
[史铁丑. 重庆山区耕地撂荒的规模及影响因素研究[D]. 北京: 中国科学院大学, 2015.]
[6] Zhang Y, Li X, Song W.Determinants of cropland abandoned at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy, 2014, 41(4): 186-192.http://linkinghub.elsevier.com/retrieve/pii/S0264837714001185
[7] Queiroz C, Beilin R, Folke C, et al.Farmland abandoned: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology and the Environment, 2014, 12(5): 288-296.http://doi.wiley.com/10.1890/120348
DOI: 10.1890/120348     
[8] Molinillo M, Lasanta T, Garcia-Ruiz J M. Research: managing mountainous degraded landscapes after farmland abandonment in the Central Spanish Pyrenees. Environmental Management, 1997, 21(4): 587-598.http://link.springer.com/10.1007/s002679900051
[9] Bakker M M, Govers G, Doorn A V, et al.The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology, 2008, 98(3/4): 213-226.http://linkinghub.elsevier.com/retrieve/pii/S0169555X07002292
[10] Batllebayer L, Batjes N H, Bindraban P S.Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture Ecosystems & Environment, 2010, 137(1): 47-58.http://www.cabdirect.org/abstracts/20103151526.html
[11] Vuichard N, Ciais P, Belelli L, et al.Carbon sequestration due to the abandoned of agriculture in the former USSR since 1990. Global Biogeochemical Cycles, 2008, 22(4): 1417-1430.
[12] Macdonald D, Crabtree J R, Wiesinger G, et al.Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 2000, 59(1): 47-69.
[13] Alcantara C, Kuemmerle T, Prishchepov A V, et al.Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 2012, 124(2): 334-347.http://linkinghub.elsevier.com/retrieve/pii/S0034425712002222
[14] Yusoff N M, Muharam F M, Khairunniza-Bejo S.Towards the use of remote-sensing data for monitoring of abandoned oil palm lands in Malaysia: A semi-automatic approach. International Journal of Remote Sensing, 2017, 38(2): 432-449.https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1266111
[15] Alcantara C, Kuemmerle T, Baumann M, et al.Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environmental Research Letters, 2013, 8(3): 1345-1346.
[16] Baumann M, Kuemmerle T, Elbakidze M, et al.Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 2011, 28(3): 552-562.http://linkinghub.elsevier.com/retrieve/pii/S0264837710001146
[17] Kuemmerle T, Müller D, Griffiths P, et al.Land use change in Southern Romania after the collapse of socialism. Regional Environmental Change, 2009, 9(1): 1-12.http://link.springer.com/10.1007/s10113-008-0050-z
[18] Estel S, Kuemmerle T, Alcántara C, et al.Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, 2015, 163: 312-325.http://linkinghub.elsevier.com/retrieve/pii/S003442571500125X
[19] Ma Lingling.Prohe into the reasons of farmland abandoned in semi-arid regions based on remote sensing and the investigation of peasant household: A case study of Hollinger County in Inner Mongolia [D]. Huhhot: Inner Mongolia Normal University, 2010.
[马玲玲. 半干旱地区基于遥感与农户调查的耕地撂荒原因探究: 以内蒙古和林格尔县为例[D]. 呼和浩特: 内蒙古师范大学, 2010.]
[20] Cheng Weifang.Study on remote sensing survey method of abandoned farmland in South China [D]. Beijing: University of Chinese Academy of Sciences, 2011.
[程维芳. 南方撂荒地遥感调查方法研究[D]. 北京: 中国科学院大学, 2011.]
[21] Shi Tiechou, Xu Xiaohong.Extraction and validation of abandoned farmland parcel in typical counties of Chongqing. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 261-267.
[史铁丑, 徐晓红. 重庆市典型县撂荒耕地图斑的提取与验证. 农业工程学报, 2016, 32(24): 261-267.]http://d.wanfangdata.com.cn/Periodical/nygcxb201624035
[22] Niu Jiqiang, Lin Hao, Niu Yingnan, et al.Analysis of spatial pattern and driving factors for abandoned arable lands in underdevelopment region. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 141-149.
[牛继强, 林昊, 牛樱楠, . 经济欠发达地区撂荒耕地空间格局与驱动因素分析. 农业机械学报, 2017, 48(2): 141-149.]研究点分析
[23] Du Wenwen, Xing Huaiyong, Wang Linghua.Investigation on the problem of abandoned farmland in Qingyun County of Shandong Province. Rural Economy and Science-Technology, 2015, 26(11): 25-27.
[杜文文, 行怀勇, 王令华. 山东庆云县农村耕地撂荒问题调查研究. 农村经济与科技, 2015, 26(11): 25-27.]http://d.wanfangdata.com.cn/Periodical/ncjjykj201511007
[24] Li Jixiang, Lu Jinfeng.Investigation report on abandoned farmland in Shandong Province. Management of Rural Cooperative Economy, 1994(8): 35-36.
[李继祥, 逯锦逢. 山东省耕地“撂荒”的调查报告. 农村合作经济经营管理, 1994(8): 35-36.]研究点分析
[25] Chen Yun, Dai Jinfang, Li Junjie.CART-based decision tree classifier using multi-feature of image and its application. Geography and Geo-Information Science, 2008, 24(2): 33-36.
[陈云, 戴锦芳, 李俊杰. 基于影像多种特征的CART决策树分类方法及其应用. 地理与地理信息科学, 2008, 24(2): 33-36.]
[26] Zhao Ping, Fu Yunfei, Zheng Liugen, et al.CART based land use/cover classification of remote sensing images. Journal of Remote Sensing, 2005, 9(6): 708-716.
[赵萍, 傅云飞, 郑刘根, . 基于分类回归树分析的遥感影像土地利用/覆被分类研究. 遥感学报, 2005, 9(6): 708-716.]
[27] Ma Xin, Wang Xiyuan, Hu Bo.The cart automatic decision tree to multi-source remote sensing image classification based on envi: Taking Beijing as an example. Ningxia Engineering Technology, 2017, 16(1): 63-66.
[马鑫, 汪西原, 胡博. 基于ENVI的CART自动决策树多源遥感影像分类: 以北京市为例. 宁夏工程技术, 2017, 16(1): 63-66.]研究点分析
[28] Breiman L, Friedman J H, Olshen R, et al.Classification and regression trees. Biometrics, 1984, 40(3): 358.
[29] Li Shengfa, Li Xiubin.Progress and prospect on farmland abandonment. Acta Geographica Sinica, 2016, 71(3): 370-389.
[ 李升发, 李秀彬. 耕地撂荒研究进展与展望. 地理学报, 2016, 71(3): 370-389.]
[30] Smaliychuk A, Müller D, Prishchepov A V, et al.Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers. Global Environmental Change, 2016, 38: 70-81.https://linkinghub.elsevier.com/retrieve/pii/S0959378016300206
[31] Lei Hao.The cultivated farmland abandonment and risk assessment based on characteristics of abandoned farmland: Illustrated by the case of Shehong Tuopai Town and Three Others [D]. Chengdu: Sichuan Normal University, 2016.
[雷浩. 基于撂荒耕地特征值的撂荒风险评价研究: 以射洪县沱牌镇等四镇为例[D]. 成都: 四川师范大学, 2016.]
[1] 程维明,高晓雨,马廷,徐新良,陈印军,周成虎. 基于地貌分区的1990-2015年中国耕地时空特征变化分析[J]. 地理学报, 2018, 73(9): 1613-1629.
[2] 曲艺,龙花楼. 中国耕地利用隐性形态转型的多学科综合研究框架[J]. 地理学报, 2018, 73(7): 1226-1241.
[3] 李美娇,何凡能,杨帆,李士成. 元代前期省域耕地面积重建[J]. 地理学报, 2018, 73(5): 832-842.
[4] 李升发,李秀彬. 中国山区耕地利用边际化表现及其机理[J]. 地理学报, 2018, 73(5): 803-817.
[5] 张英男,龙花楼,戈大专,屠爽爽,曲艺. 黄淮海平原耕地功能演变的时空特征及其驱动机制[J]. 地理学报, 2018, 73(3): 518-534.
[6] 张丽娟,姚子艳,唐世浩,李侠祥,郝甜甜. 20世纪80年代以来全球耕地变化的基本特征及空间格局[J]. 地理学报, 2017, 72(7): 1235-1247.
[7] 许艳,濮励杰,张润森,朱明,李雪盈,沈洪运,茅天颖,徐辰星. 江苏沿海滩涂围垦耕地质量演变趋势分析[J]. 地理学报, 2017, 72(11): 2032-2046.
[8] 乔琨,朱文泉,胡德勇,郝明,陈姗姗,曹诗颂. 北京市不同功能区不透水地表时空变化差异[J]. 地理学报, 2017, 72(11): 2018-2031.
[9] 曲衍波,姜广辉,张佰林,李慧燕,魏淑文. 山东省农村居民点转型的空间特征及其经济梯度分异[J]. 地理学报, 2017, 72(10): 1845-1858.
[10] 魏希文,缪丽娟,江源,崔雪锋. 基于分层分区法的中国历史耕地数据的网格化重建[J]. 地理学报, 2016, 71(7): 1144-1156.
[11] 李升发,李秀彬. 耕地撂荒研究进展与展望[J]. 地理学报, 2016, 71(3): 370-389.
[12] 何凡能,李美娇,刘浩龙. 北宋路域耕地面积重建及时空特征分析[J]. 地理学报, 2016, 71(11): 1967-1978.
[13] 石晓丽,史文娇. 气候变化和人类活动对耕地格局变化的贡献归因综述[J]. 地理学报, 2015, 70(9): 1463-1476.
[14] 康蕾,马丽,刘毅. 珠江三角洲地区未来海平面上升及风暴潮增水的耕地损失预测[J]. 地理学报, 2015, 70(9): 1375-1389.
[15] 张佰林,张凤荣,曲宝德,李灿,陈军伟. 山东省沂水县农村非农化程度差异及驱动力[J]. 地理学报, 2015, 70(6): 1008-1021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发