地理学报 ›› 2016, Vol. 71 ›› Issue (10): 1721-1730.doi: 10.11821/dlxb201610005
收稿日期:
2016-02-12
修回日期:
2016-05-06
出版日期:
2016-11-28
发布日期:
2016-11-28
作者简介:
作者简介:孙斌栋(1970-), 男, 河北阜平人, 博士, 教授, 博士生导师, 中国地理学会会员(S110006693M), 主要研究方向为城市地理、城市规划和区域经济。E-mail:
基金资助:
SUN Bindong1,2, YAN Hong1,2(), ZHANG Tinglin1,2
Received:
2016-02-12
Revised:
2016-05-06
Published:
2016-11-28
Online:
2016-11-28
摘要:
随着中国经济发展和居民生活水平的提升,超重和肥胖问题开始显现,严重影响到居民的身体健康。基于中国家庭追踪调查的全国抽样数据,采用结构方程模型检验社区建成环境对居民个体超重的影响。研究发现,控制社会经济属性后,提高社区人口密度或设施可达性、缩短居民到公交站距离,可以通过减少个体机动化出行倾向而间接降低超重的可能性,但对超重的直接效应及总效应为正。这一结论与西方发达国家的经验不同,因此制定健康政策需要基于中国自身国情和规律,在建成环境方面应重点提高室外空间可步行性和休闲吸引力。
孙斌栋, 阎宏, 张婷麟. 社区建成环境对健康的影响——基于居民个体超重的实证研究[J]. 地理学报, 2016, 71(10): 1721-1730.
SUN Bindong,YAN Hong,ZHANG Tinglin. Impact of community built environment on residents' health:A case study on individual overweight[J]. Acta Geographica Sinica, 2016, 71(10): 1721-1730.
表1
变量描述性统计
变量名 | 样本数量 | 均值 | 标准差 | 最大值 | 最小值 | 中值 |
---|---|---|---|---|---|---|
超重(超重=1) | 15356 | 0.34 | 0.47 | 1.00 | 0.00 | 0.00 |
人口密度(万人/km2) | 15356 | -1.87 | 2.28 | 7.26 | -9.98 | -2.24 |
设施可达性(万个/km2) | 15356 | -6.73 | 2.31 | 2.92 | -15.57 | -7.09 |
距最近公交站距离(km) | 15356 | -1.04 | 1.64 | 2.30 | -6.91 | -0.69 |
城乡属性(农村=1) | 15356 | 0.48 | 0.50 | 1.00 | 0.00 | 0.00 |
年龄(岁) | 15356 | 48.78 | 14.69 | 93.00 | 18.00 | 48.00 |
性别(男性=1) | 15356 | 0.49 | 0.50 | 1.00 | 0.00 | 0.00 |
婚姻状况(已婚=1) | 15356 | 0.87 | 0.34 | 1.00 | 0.00 | 1.00 |
工作状况(工作=1) | 15356 | 0.56 | 0.50 | 1.00 | 0.00 | 1.00 |
家庭人均收入(万元) | 15356 | -0.31 | 1.28 | 5.02 | -9.90 | -0.08 |
过去一周是否食肉(是=1) | 15356 | 0.85 | 0.35 | 1.00 | 0.00 | 1.00 |
过去一周是否吃“垃圾”食品(是=1) | 15356 | 0.31 | 0.46 | 1.00 | 0.00 | 0.00 |
日平均通勤时间(h) | 15127 | 0.49 | 0.32 | 1.79 | 0.00 | 0.69 |
日平均睡眠时间(h) | 15127 | 2.07 | 0.18 | 2.48 | 1.39 | 2.08 |
日平均吃饭时间(h) | 15127 | 0.26 | 0.51 | 1.79 | -2.30 | 0.00 |
表2
结构方程回归结果(1)
模型1 | 模型2 | 模型3 | ||||||
---|---|---|---|---|---|---|---|---|
个体机动化出行 | 超重 | 个体机动化出行 | 超重 | 个体机动化出行 | 超重 | |||
人口密度 | -0.043*** | 0.023*** | -0.043*** | 0.026*** | -0.044*** | 0.026*** | ||
距最近公交站距离 | 0.026** | -0.020** | 0.026** | -0.022*** | 0.026** | -0.020** | ||
农村 | 0.202*** | -0.183*** | 0.202*** | -0.198*** | 0.200*** | -0.193*** | ||
年龄 | 0.011** | 0.067*** | 0.011** | 0.066*** | 0.014*** | 0.066*** | ||
年龄二次项 | 0.000*** | -0.001*** | 0.001*** | -0.001*** | 0.000*** | -0.001*** | ||
男性 | 0.539*** | 0.131*** | 0.539*** | 0.090*** | 0.542*** | 0.074*** | ||
已婚 | 0.413*** | 0.108*** | 0.413*** | 0.076** | 0.419*** | 0.079** | ||
工作 | 0.146*** | -0.038 | 0.146*** | -0.050* | 0.140*** | -0.050* | ||
家庭人均收入 | 0.060*** | 0.048*** | 0.060*** | 0.043*** | 0.062*** | 0.043*** | ||
家庭人均收入二次项 | 0.006* | 0.006* | 0.006* | |||||
摄入肉类食品 | 0.014 | 0.014 | 0.010 | |||||
摄入垃圾食品 | 0.114*** | 0.115*** | 0.118*** | |||||
日平均通勤时间 | -0.074* | |||||||
日平均睡眠时间 | -0.111* | |||||||
日平均吃饭时间 | -0.038 | |||||||
个体机动化出行 | 0.076*** | 0.075*** | ||||||
RMSEA | 0.04 | 0.04 | 0.029 | |||||
CFI | 0.913 | 0.913 | 0.901 | |||||
N | 15356 | 15356 | 15127 |
表3
结构方程回归结果(2)
模型1 | 模型2 | 模型3 | ||||||
---|---|---|---|---|---|---|---|---|
个体机动化出行 | 超重 | 个体机动化出行 | 超重 | 个体机动化出行 | 超重 | |||
设施可达性 | -0.027** | 0.019** | -0.027** | 0.021*** | -0.029*** | 0.020*** | ||
距最近公交站距离 | 0.027** | -0.020** | 0.027** | -0.022*** | 0.028** | -0.021** | ||
农村 | 0.224*** | -0.190*** | 0.224*** | -0.207*** | 0.221*** | -0.201*** | ||
年龄 | 0.011** | 0.067*** | 0.011** | 0.066*** | 0.014*** | 0.066*** | ||
年龄二次项 | 0.000*** | -0.001*** | 0.000*** | -0.001*** | 0.000*** | -0.001*** | ||
男性 | 0.537*** | 0.131*** | 0.537*** | 0.091*** | 0.540*** | 0.076*** | ||
已婚 | 0.413*** | 0.107*** | 0.413*** | 0.077** | 0.419*** | 0.079** | ||
工作 | 0.147*** | -0.039 | 0.147*** | -0.049* | 0.142*** | -0.051* | ||
家庭人均收入 | 0.055*** | 0.050*** | 0.055*** | 0.046*** | 0.057*** | 0.046*** | ||
家庭人均收入二次项 | 0.006* | 0.006* | 0.007* | |||||
摄入肉类食品 | 0.014 | 0.014 | 0.010 | |||||
摄入垃圾食品 | 0.113*** | 0.113*** | 0.117*** | |||||
日平均通勤时间 | -0.074* | |||||||
日平均睡眠时间 | -0.115* | |||||||
日平均吃饭时间 | -0.038 | |||||||
个体机动化出行 | 0.074*** | 0.073*** | ||||||
RMSEA | 0.04 | 0.04 | 0.029 | |||||
CFI | 0.913 | 0.913 | 0.902 | |||||
N | 15356 | 15356 | 15127 |
表4
不同密度地区被调查居民的社会经济属性差异
变量名 | 高密度地区 | 中等密度地区 | 低密度地区 |
---|---|---|---|
农村 | 0.22 | 0.50 | 0.72 |
家庭人均收入(万元) | 0.00 | -0.43 | -0.51 |
过去一周是否食肉 (是=1) | 0.88 | 0.85 | 0.83 |
过去一周是否吃“垃圾”食品(是=1) | 0.32 | 0.33 | 0.29 |
个体机动化出行(是=1) | 0.35 | 0.46 | 0.49 |
日平均通勤时间(h) | 0.50 | 0.48 | 0.49 |
日平均睡眠时间(h) | 2.04 | 2.08 | 2.08 |
日平均吃饭时间(h) | 0.21 | 0.32 | 0.26 |
高频率外出就餐(是=1) | 0.20 | 0.12 | 0.11 |
日平均静态活动时间(h) | 1.19 | 1.03 | 0.96 |
日平均锻炼时间(h) | 0.45 | 0.44 | 0.45 |
[1] |
Schoeller D A.The energy balance equation: Looking back and looking forward are two very different views. Nutrition Reviews, 2009, 67(5): 249-254.
doi: 10.1111/j.1753-4887.2009.00197.x pmid: 19386028 |
[2] |
Cervero R, Kockelman K.Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 1997, 2(3): 199-219.
doi: 10.1016/S1361-9209(97)00009-6 |
[3] |
Papas M A, Alberg A J, Ewing R, et al.The built environment and obesity. Epidemiologic Reviews, 2007, 29(1): 129-143.
pmid: 32820133725232022567292223222217533172814059645358781727800 |
[4] | Frank L D, Engelke P O.The built environment and human activity patterns: Exploring the impacts of urban form on public health. Journal of Planning Literature, 2001, 16(2): 202-218. |
[5] |
Handy S L, Boarnet M G, Ewing R, et al.How the built environment affects physical activity: Views from urban planning. American Journal of Preventive Medicine, 2002, 23(2): 64-73.
doi: 10.1016/S0749-3797(02)00475-0 pmid: 12133739 |
[6] |
Zhang M. the role of land use in travel mode choice: Evidence from Boston and Hong Kong. Planning, 2004, 70(3): 344-360.
doi: 10.1080/01944360408976383 |
[7] | Frank L D, Pivo G.Impacts of mixed use and density on utilization of three modes of travel: Single-occupant vehicle, transit, and walking. Transportation Research Record, 1994, 1446: 44-52. |
[8] |
Sun Bindong, Dan Bo.Impact of urban built environment on residential choice of commuting mode: A case study of Shanghai. Acta Geographica Sinica, 2015, 70(10): 1664-1674
doi: 10.11821/dlxb201510010 |
[孙斌栋, 但波. 上海城市建成环境对居民通勤方式选择的影响. 地理学报, 2015, 70(10): 1664-1674.]
doi: 10.11821/dlxb201510010 |
|
[9] | Rundle A, DiezRoux A V, Freeman L M, et al. The urban built environment and obesity in New York City: A multilevel analysis. American Journal of Health Promotion, 2007, 21(4s): 326-334. |
[10] |
Lopez-Zetina J, Lee H, Friis R.The link between obesity and the built environment: Evidence from an ecological analysis of obesity and vehicle miles of travel in California. Health Place, 2006, 12(4): 656-664.
doi: 10.1016/j.healthplace.2005.09.001 pmid: 16253540 |
[11] |
Xu F, Li J Q, Liang Y Q, et al.Residential density and adolescent overweight in a rapidly urbanising region of mainland China. Journal of Epidemiology and Community Health, 2010, 64(11): 480-488.
pmid: 3289072800100402549339292223222219858540814032923872579665583 |
[12] |
Cervero R.Built environments and mode choice: Toward a normative framework. Transportation Research Part D Transport & Environment, 2002, 7(4): 265-284.
doi: 10.1016/S1361-9209(01)00024-4 |
[13] |
Li F, Harmer P A, Cardinal B J, et al.Built environment, adiposity, and physical activity in adults aged 50-75. American journal of preventive medicine, 2008, 35(1): 38-46.
doi: 10.1016/j.amepre.2008.03.021 pmid: 2459142 |
[14] |
Smith K R, Brown B B, Yamada I, et al.Walkability and body mass index. American Journal of Preventive Medicine, 2008, 35(3): 237-244.
doi: 10.1016/j.amepre.2008.05.028 |
[15] |
Brown B B, Yamada I, Smith K R, et al.Mixed land use and walkability: Variations in land use measures and relationships with BMI, overweight, and obesity. Health & Place, 2009, 15(4): 1130-1141.
doi: 10.1016/j.healthplace.2009.06.008 |
[16] |
Yamada I, Brown B B, Smith K R, et al.Mixed land use and obesity: An empirical comparison of alternative land use measures and geographic scales. The Professional Geographer, 2012, 64(2): 157-177.
doi: 10.1080/00330124.2011.583592 pmid: 3365604 |
[17] |
Raja S, Yin L, Roemmich J, et al.Food environment, built environment, and women's BMI: Evidence from Erie County, New York. Journal of Planning Education and Research, 2010, 29(4): 444-460.
doi: 10.1177/0739456X10367804 |
[18] |
Veitch J, Ball K, Crawford D, et al.Park improvements and park activity: A natural experiment. American Journal of Preventive Medicine, 2012, 42(6): 616-619.
doi: 10.1016/j.amepre.2012.02.015 pmid: 22608379 |
[19] | Handy S, Cao X Y, Mokhtarian P L.Self-selection in the relationship between the built environment and walking: Empirical evidence from Northern California. Journal of the American Planning Association, 2006, 72(1): 55-74. |
[20] |
Heinrich K M, Lee R E, Regan G R, et al.How does the built environment relate to body mass index and obesity prevalence among public housing residents? American Journal of Health Promotion, 2008, 22(3): 187-194.
doi: 10.4278/ajhp.22.3.187 pmid: 18251120 |
[21] | Hoehner C M, Allen P, Barlow C E, et al.Understanding the independent and joint associations of the home and workplace built environments on cardiorespiratory fitness and body mass index. American Journal of Epidemiology. 2013, 178(7): 1094-1105. |
[22] |
Doyle S, Kelly-Schwartz A, Schlossberg M, et al.Active community environments and health: The relationship of walkable and safe communities to individual health. Journal of the American Planning Association, 2006, 72(1): 19-31.
doi: 10.1080/01944360608976721 |
[23] |
Frank L D, Sallis J F, Conway T L, et al.Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. Journal of the American Planning Association, 2006, 72(1): 75-87.
doi: 10.1080/01944360608976725 |
[24] |
Lee I M, Ewing R, Sesso H D.The built environment and physical activity levels: The Harvard Alumni Health Study. American Journal of Preventive Medicine, 2009, 37(4): 293-298.
doi: 10.1016/j.amepre.2009.06.007 pmid: 2749578 |
[25] |
Lopez R.Urban sprawl and risk for being overweight or obese. American Journal of Public Health 2004, 94(9): 1574-1579.
doi: 10.2105/AJPH.94.9.1574 pmid: 15333317 |
[26] |
Xu Y, Wen M, Wang F.Multilevel built environment features and individual odds of overweight and obesity in Utah. Applied Geography, 2015, 60: 197-203.
doi: 10.1016/j.apgeog.2014.10.006 |
[27] |
Frank L D, Saelens B E, Powell K E, et al.Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Social Science & Medicine, 2007, 65(9): 1898-1914.
doi: 10.1016/j.socscimed.2007.05.053 pmid: 17644231 |
[28] |
Zick C D, Hanson H, Fan J X, et al.Re-visiting the relationship between neighborhood environment and BMI: An instrumental variables approach to correcting for residential selection bias. International Journal of Behavioral Nutrition & Physical Activity, 2013, 10(1): 1-10.
doi: 10.1186/1479-5868-10-27 pmid: 6 |
[29] |
Sallis J F, Saelens B E, Frank L D, et al.Neighborhood built environment and income: Examining multiple health outcomes. Social Science & Medicine, 2009, 68(7): 1285-1293.
doi: 10.1016/j.socscimed.2009.01.017 pmid: 19232809 |
[30] |
Mayne S L, Auchincloss A H, Michael Y L.Impact of policy and built environment changes on obesity-related outcomes: A systematic review of naturally occurring experiments. Obesity Reviews, 2015, 16(5): 362-75.
doi: 10.1111/obr.12269 pmid: 25753170 |
[31] | Pendola R, Gen S.BMI, auto use, and the urban environment in San Francisco. Health & Place, 2007, 13(2): 551-556. |
[32] |
Ding D, Adams M A, Sallis J F, et al.Perceived neighborhood environment and physical activity in 11 countries: Do associations differ by country? The International Journal of Behavioral Nutrition and Physical Activity, 2013, 10(6): 2064-2069.
doi: 10.1186/1479-5868-10-57 pmid: 1180 |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[3] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[4] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[5] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[6] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[7] | 夏兴生, 潘耀忠, 朱秀芳, 张锦水. 中国综合农业分区下的Ångström-Prescott公式系数逐月校正与优选[J]. 地理学报, 2021, 76(4): 888-902. |
[8] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[9] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[10] | 徐羽, 李秀彬, 辛良杰. 中国耕地规模化流转租金的分异特征及其影响因素[J]. 地理学报, 2021, 76(3): 753-763. |
[11] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[12] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[13] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[14] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[15] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |