地理学报 ›› 2015, Vol. 70 ›› Issue (6): 980-992.doi: 10.11821/dlxb201506011

• • 上一篇    下一篇

中国能源生态效率的空间格局与空间效应

关伟1,2(), 许淑婷2   

  1. 1. 辽宁师范大学海洋经济与可持续发展研究中心,大连 116029
    2. 辽宁师范大学城市与环境学院,大连 116029
  • 收稿日期:2014-12-15 修回日期:2015-04-22 出版日期:2015-06-20 发布日期:2015-07-16
  • 作者简介:

    作者简介:关伟(1959-), 男, 辽宁岫岩人, 教授, 博士生导师, 中国地理学会会员(S110003977M), 研究方向为区域经济与产业规划。E-mail:lsgw2000@sina.com

  • 基金资助:
    教育部人文社会科学重点研究基地重大项目(14JJD790044);辽宁省教育厅科学技术研究项目(L2013411)

Study on spatial pattern and spatial effect of energy eco-efficiency in China

Wei GUAN1,2(), Shuting XU2   

  1. 1. Research Center for Marine Economy and Sustainable Development, Liaoning Normal University, Dalian 116029, Liaoning, China
    2. School of Urban and Environment, Liaoning Normal University, Dalian 116029, Liaoning, China
  • Received:2014-12-15 Revised:2015-04-22 Online:2015-06-20 Published:2015-07-16
  • Supported by:
    The MOE Project of Key Research Institute of Humanities and Social Sciences in University, No.14JJD790044;Science and Technology Research Program Supported by the Education Department of Liaoning Province, No.L2013411

摘要:

能源生态效率兼顾能源利用中的生态效益与经济效益,是对能源—环境—经济3E系统效率的度量。基于考虑非期望产出的SBM模型对中国1997-2012年省际能源生态效率进行测度,从空间格局规模、格局强度与格局纹理三个方面分析能源生态效率的空间分布特征和演变规律,运用空间计量模型验证中国省际能源生态效率的空间溢出效应及其影响因素。研究表明:① 中国能源生态效率整体偏低,低效率省份约占40%,广东、海南、福建位于能源生态效率值的最前沿,宁夏、甘肃、青海、新疆为主要的低能效地区。全国能源生态效率总体上呈U型演变格局,局部地区主要有增长型、波动型、突变型和平稳型等4种演变类型;② 中国能源生态效率在省际尺度上表现出显著的全局与局部空间集聚特征,高高集聚区主要分布在东部沿海和南部沿海地区,低低集聚区主要分布在西北地区和黄河中游地区。空间格局的变化主要发生在高低集聚区与低高集聚区,其中又以京津冀地区的集聚类型演变最为显著;③ 中国能源生态效率存在着明显的空间效应,某一地区的能源生态效率对相邻地区的空间溢出程度均强于相邻地区的误差冲击对该地区的影响程度;在影响能源生态效率空间效应的诸多因素中,产业结构的影响最大。

关键词: 能源生态效率, SBM模型, 空间格局, 空间计量模型

Abstract:

Energy eco-efficiency is a concept trying to integrate ecological and economic benefits arising from energy utilization and serves as a measurement of the efficiency in energy-environment-economy system. Based on the SBM model considering undesirable output, this paper first measured the energy eco-efficiency of provinces in China from 1997 to 2012. Then it analyzed the spatial distribution and the evolution of energy eco-efficiency from three aspects—scale, intensity, and grain of spatial patterns; and finally, it verified the spatial spillover effects and the influencing factors of energy eco-efficiency in different provinces by means of spatial econometric model. Conclusions can be drawn as follows: (1) the overall energy eco-efficiency is relatively low in China, of which energy-inefficient areas account for about 40%. Provinces of Guangdong, Hainan, and Fujian enjoy the highest energy eco-efficiency, but provinces of Ningxia, Gansu, Qinghai, and Xinjiang are representative areas with low efficiency, thus making a U-shaped evolution pattern of China's overall energy eco-efficiency; and in local regions, there are four evolution patterns: increasing, fluctuating, mutating, and leveling. (2) At the provincial level, China's energy eco-efficiency features significant spatial agglomeration globally and locally. High-High agglomeration mainly occurred in the eastern and southern coastal areas, and Low-Low agglomeration, in the northwest and middle reaches of the Yellow River. The change in spatial patterns mainly occurred in areas with High-Low and Low-High agglomeration, and the most remarkable change took place in the Beijing-Tianjin-Hebei region. (3) There exists a significant spatial effect of energy eco-efficiency among provinces of China. For the energy eco-efficiency of a certain region, the spatial spillovers from adjacent regions outweigh the influence of the error impact from adjacent regions. Industrial structure hasgreat influence on the energy eco-efficiency.

Key words: energy eco-efficiency, SBM model, space pattern, spatial econometric model