地理学报 ›› 2013, Vol. 68 ›› Issue (9): 1251-1262.doi: 10.11821/dlxb201309008
黄粤1, 包安明1, 王士飞1, 王永琴2, 段远彬2
收稿日期:
2013-03-22
修回日期:
2013-06-13
出版日期:
2013-09-05
发布日期:
2013-09-05
作者简介:
黄粤(1980- ), 女, 助理研究员, 广东茂名人, 从事干旱区水文水资源研究。E-mail: hy800821@163.com
基金资助:
HUANG Yue1, BAO Anming1, WANG Shifei1, WANG Yongqin2, DUAN Yuanbin2
Received:
2013-03-22
Revised:
2013-06-13
Online:
2013-09-05
Published:
2013-09-05
Contact:
包安明(1967- ), 男, 研究员。E-mail: baoam@ms.xjb.ac.cn
Supported by:
摘要: 采用2001-2011 年野外调查资料和卫星遥感影像数据,对生态输水影响下的塔里木河下游地下水、植被变化特征进行分析,并探讨了典型断面植被对地下水埋深变化的响应关系。结果表明:(1) 各断面地下水位变化过程与河道来水过程密切相关,近10 年来经历了显著抬升(2000-2005 年)—缓慢降低(2006-2009 年)—小幅抬升(2010 至今) 的过程,主要表现为随生态输水量的改变呈波动变化;地下水位抬升幅度与生态放水量的相关系数达0.78,与生态放水持续时间的相关系数为0.70。(2) 2001-2011 年塔河下游植被覆盖面积总体上呈增加趋势,其中灌木林地和草地变化显著,林地和耕地面积呈小幅度变化;植被覆盖度的变化主要表现为2001-2006 年显著提高和2006-2011 年小幅变化。(3) 植被覆盖度随地下水位的抬升呈现出增加的趋势;垂直河道的方向上,同时期植被覆盖度与地下水埋深空间分布特征一致,均以输水河道为轴向两侧植被覆盖度(地下水埋深) 逐渐降低(增大);平行河道的方向,植被覆盖度对地下水埋深的响应幅度随着离大西海子水库距离的增加而减小。
黄粤, 包安明, 王士飞, 王永琴, 段远彬. 间歇性输水影响下的2001-2011 年塔里木河下游生态环境变化[J]. 地理学报, 2013, 68(9): 1251-1262.
HUANG Yue, BAO Anming, WANG Shifei, WANG Yongqin, DUAN Yuanbin. Eco-environmental change in the lower Tarim River under the influence of intermittent water transport[J]. Acta Geographica Sinica, 2013, 68(9): 1251-1262.
[1] Chen Yaning, Zhang Xiaolei, Zhu Xiangmin et al. Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River, China. Science in China: Series D, 2004, 47(11): 1053-1064.[陈亚宁, 张小雷, 祝向民等. 新疆塔里木河下游断流河道输水的生态效应分析. 中国科学: D辑, 2004, (5): 475-482.] [2] Deng Mingjiang. Changes of climate and runoff in Tarim River Basin and ecosystem restoration in the lower reaches of Tarim River. Journal of Glaciology and Geocryology, 2006, 28(5): 694-702. [邓铭江. 塔里木河流域气候与径流变化及 生态修复. 冰川冻土, 2006, 28(5): 694-702.] [3] Jiang Xiaohui, Liu Changming. The response of vegetation to water transport in the lower reaches of the Heihe River. Acta Geographica Sinica, 2009, 64(7): 791-797. [蒋晓辉, 刘昌明. 黑河下游植被对调水的响应. 地理学报, 2009, 64 (7): 791-797.] [4] Xu H, Ye M, Song Y et al. The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower Tarim River. Environmental Monitoring and Assessment, 2007, 131(1): 37-48. [5] Deng Mingjiang. An appraisal of remote-sensing monitoring on vegetation restoration and ecological water-conveying in the lower reaches of Tarim River. Journal of Glaciology and Geocryology, 2007, 29(3): 380-386. [邓铭江. 塔里木河 下游生态输水及植被恢复遥感监测评价. 冰川冻土, 2007, 29(3): 380-386.] [6] Gui Dongwei. The study of the ecology response and ecology water guarantee after the water transfers in the lower reaches of the Tarim River [D]. Urumqi: Xinjiang University, 2007. [桂东伟. 塔里木河下游应急输水后的生态响应及 生态用水保障研究[D]. 乌鲁木齐: 新疆大学, 2007.] [7] Liu Guilin, Alishir Kurban, Arkin Abaydulla, et al. Changes in landscape pattern in the lower reaches of Tarim River after an ecological water delivery. Journal of Glaciology and Geocryology, 2012, 34(1): 161-168. [刘桂林, 库尔班艾里 西尔, 艾白不拉艾尔肯等. 塔里木河下游生态输水后植被景观格局动态变化研究. 冰川冻土, 2012, 34(1): 161-168.] [8] Zhang Yichi, Yu Jingjie, Qiao Maoyun et al. Effects of eco-water transfer on changes of vegetation in the lower Heihe River basin. Journal of Hydraulic Engineering, 2011, (7): 757-765. [张一驰, 于静洁, 乔茂云等. 黑河流域生态输水对 下游植被变化影响研究. 水利学报, 2011, (7): 757-765.] [9] Hao Xingming, Chen Yaning, Li Weihong et al. Response of desert riparian forest vegetation to groundwater depth changes in the middle and lower Tarim River. Acta Geographica Sinica, 2008, 63(11): 1123-1130. [郝兴明, 陈亚宁, 李 卫红等. 塔里木河中下游荒漠河岸林植被对地下水埋深变化的响应. 地理学报. 2008, 63(11): 1123-1130.] [10] Xu Hailiang, Chen Yaning, Li Weihong. Study on response of groundwater after ecological water transport at the lower reaches of the Tarim River. Research of Environment al Sciences, 2003, 16(2): 19-23. [11] Walter V. Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3): 225-238. [12] Liu Rui. Methods for detecting land use changes based on the land use transition matrix. Resources Science, 2010, 32 (8): 1544-1550. [刘瑞. 基于转移矩阵的土地利用变化信息挖掘方法探讨. 资源科学, 2010, 32(8): 1544-1550.] [13] Los S O, Tucker C J, Justice C O et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II. Journal of Climate, 1996, 9: 706-737. [14] Guli Jiapaer, Chen Xi, Bao Anming. Coverage extraction and up-scaling of sparse desert vegetation in arid area. Chinese Journal of Applied Ecology, 2009, 20(12): 2925-2934. [古丽·加帕尔, 陈曦, 包安明. 干旱区荒漠稀疏植被覆 盖度提取及尺度扩展效应. 应用生态学报. 2009, 20(12): 2925-2934.] [15] Zhao Wenzhi. Recent advances in desert vegetation response to groundwater table changes. Acta Ecologica Sinica, 2006, 26(8): 2703-2708. [赵文智. 荒漠区植被对地下水埋深响应研究进展. 生态学报, 2006, 26(8): 2703-2708.] [16] Xu Hailiang, Song Yudong, Wang Qiang. The effect of groundwater level on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China. Acta Phytoecologica Sinica, 2004, 28(3): 400-405. [徐海量, 宋郁东, 王 强. 塔里木河中小有地区不同地下水位对植被的影响. 植物生态学报, 2004, 28(3): 400-405.] [17] Yang Pengnian, Deng Mingjiang, Li Xia et al. Respond width of groundwater level after conveying stream water to the lower reaches of the Tarim River, Xinjiang. Arid Zone Research, 2008, 25(3): 331-335. [杨鹏年, 邓铭江, 李霞等. 塔里木河下游间歇输水下地下水响应宽度: 以塔里木河下游英苏断面为例. 干旱区研究, 2008, 25(3): 331-335.] [18] Chen Yaning, Li Weihong, Chen Yapeng et al. Water conveyance in dried-up riverway and ecological restoration in the lower reaches of Tarim River, China. Acta Ecologica Sinica, 2007, 27(2): 538-545. [陈亚宁, 李卫红, 陈亚鹏等. 新疆 塔里木河下游断流河道输水与生态恢复. 生态学报, 2007, 27(2): 538-545.] [19] Zhang Jianfeng, Li Guomin, Zhang Yuan et al. Responses of groundwater levels to intermittent water transfer in the lower Tarim River. Chinese Journal of Geophysics, 2012, 55(2): 622-630. [张建锋, 李国敏, 张元等. 塔河下游间歇性 输水河道附近地下水位动态响应. 地球物理学报, 2012, 55(2): 622-630.] |
[1] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[2] | 徐晨晨, 叶虎平, 岳焕印, 谭翔, 廖小罕. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5): 917-930. |
[3] | 王晓茹, 唐志光, 王建, 王欣, 魏俊锋. 基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测[J]. 地理学报, 2020, 75(3): 470-484. |
[4] | 任宇飞, 方创琳, 李广东, 孙思奥, 鲍超, 刘若文. 城镇化与生态环境近远程耦合关系研究进展[J]. 地理学报, 2020, 75(3): 589-606. |
[5] | 姚永慧, 张俊瑶, 索南东主. 南北过渡带1∶5万植被类型图遥感制图案例研究[J]. 地理学报, 2020, 75(3): 620-630. |
[6] | 周成虎, 孙九林, 苏奋振, 杨晓梅, 裴韬, 葛咏, 杨雅萍, 张岸, 廖小罕, 陆锋, 高星, 付东杰. 地理信息科学发展与技术应用[J]. 地理学报, 2020, 75(12): 2593-2609. |
[7] | 余姝辰, 王伦澈, 夏卫平, 余德清, 李长安, 贺秋华. 清末以来洞庭湖区通江湖泊的时空演变[J]. 地理学报, 2020, 75(11): 2346-2361. |
[8] | 赵贵宁, 张正勇, 刘琳, 徐丽萍, 王璞玉, 李丽, 宁珊. 基于多源遥感数据的玛纳斯河流域冰川物质平衡变化[J]. 地理学报, 2020, 75(1): 98-112. |
[9] | 刘文超, 刘纪远, 匡文慧. 陕北地区退耕还林还草工程土壤保护效应的时空特征[J]. 地理学报, 2019, 74(9): 1835-1852. |
[10] | 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(8): 1489-1507. |
[11] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[12] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |
[13] | 崔学刚,方创琳,刘海猛,刘晓菲,李咏红. 城镇化与生态环境耦合动态模拟理论及方法的研究进展[J]. 地理学报, 2019, 74(6): 1079-1096. |
[14] | 杨成德, 王欣, 魏俊峰, 刘琼欢, 鲁安新, 张勇, 唐志光. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556. |
[15] | 方创琳, 崔学刚, 梁龙武. 城镇化与生态环境耦合圈理论及耦合器调控[J]. 地理学报, 2019, 74(12): 2529-2546. |