地理学报 ›› 2012, Vol. 67 ›› Issue (3): 377-387.doi: 10.11821/xb201203009
刘艳霞1, 黄海军1, 丘仲锋2, 陈纪涛3, 杨曦光1
收稿日期:
2011-10-18
修回日期:
2011-11-09
出版日期:
2012-03-20
发布日期:
2012-03-20
通讯作者:
黄海军(1963-), 研究员, 博导, 主要从事海洋地质遥感与GIS应用研究。E-mail: hjhuang@qdio.ac.cn
基金资助:
LIU Yanxia1, HUANG Haijun1, QIU Zhongfeng2, CHEN Jitao3, YANG Xiguang1
Received:
2011-10-18
Revised:
2011-11-09
Online:
2012-03-20
Published:
2012-03-20
Supported by:
摘要: 针对潮滩环境中潮汐和坡度变化对海岸线变化监测的影响,提出一种通过两景影像计算潮滩坡降进而准确获得海岸线的方法,并利用坡降值估算潮滩体积。以岸线变化较剧烈的黄河三角洲南部的甜水沟口至小清河口的粉砂淤泥质潮滩为例进行应用研究。结合遥感影像、实测固定断面数据和水深测量数据分析表明,影像间的潮差对坡降估算值虽有较大影响,但选择合适潮位估算潮滩坡降是可行的,估算坡降的最小相对误差可达0.2%,均方根误差小于实测坡降一个数量级。1973-2009 年甜水沟口至小清河口14 个年份的岸线变化分析显示,黄河改道对本区的直接淤积影响在甜水沟向南3 km范围内,最大淤积区位于甜水沟口附近,年均淤积率31 m/a,而后在1989-2002 年海区南部出现较大幅度淤积,主要为黄河入海水沙直接或间接淤积造成的;研究时段内岸滩总体演化趋势为蚀退,最大年均蚀退速率51 m/a,黄河改道造成的海洋动力变化是影响本区海岸冲刷的主要因素。验证表明,本文方法计算的潮滩体积用于指示海滩冲淤变迁是合理可行的。
刘艳霞, 黄海军, 丘仲锋, 陈纪涛, 杨曦光. 基于影像间潮滩地形修正的海岸线监测研究——以黄河三角洲为例[J]. 地理学报, 2012, 67(3): 377-387.
LIU Yanxia, HUANG Haijun, QIU Zhongfeng, CHEN Jitao, YANG Xiguang. Monitoring Change and Position of Coastlines from Satellite Images Using Slope Correction in a Tidal Flat: A Case Study in the Yellow River Delta[J]. Acta Geographica Sinica, 2012, 67(3): 377-387.
[1] Niedermeier A, Hoja D, Lehner S. Topography and morphodynamics in the German Bight using SAR and optical remote sensing data. Ocean Dynamics, 2005, 55: 100-109. [2] Chen W-W, Chang H-K. Estimation of shoreline position and change from satellite images considering tidal variation. Estuarine, Coastal and Shelf Science, 2009, 84(1): 54-60. [3] Rasuly A., Naghdifar R., Rasoli M. Monitoring of Caspian Sea coastline changes using object-oriented techniques. Procedia Environmental Sciences, 2010, 2: 416-426. [4] Kuleli T, Guneroglu A et al. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 2011, 38(10): 1141-1149. [5] Gens R. Remote sensing of coastlines: Detection, extraction and monitoring. International Journal of Remote Sensing, 2010, 31(7): 1819-1836. [6] Boak E H, Turner I L. Shoreline definition and detection: A review. Journal Coast of Research, 2005, 21(4): 688-703. [7] Cui B-L, Li X-Y. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005). Geomorphology, 2011, 127(1/2): 32-40. [8] Chu Z X, Sun X G et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology, 2006, 227(1/2): 13-30. [9] Fan Hui, Huang Haijun, Zeng Thomas Q et al. River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow) River Delta, China. Geomorphology, 2006, 74: 124-136. [10] Song Conghe, Curtis E Woodcock, Karen C Seto et al. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment, 2001, 75(2): 230-244. [11] Frazier P S, Page K J. Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 2000, 66(12): 1461-1467. [12] Huang Haijun, Li Chengzhi. Application of Landsat images to the studies of the shoreline changes of the Huanghe River Delta. Marine Geology & Quaternary Geology, 1994, 14(2): 29-37. [黄海军, 李成治. 卫星影像在黄河三角洲岸线变化研究中的应用. 海洋地质与第四纪地质, 1994, 14(2): 29-37.] [13] Ryu Joo-Hyung, Won Joong-Sun, Min Kyung Duck. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sensing of Environment, 2002, 83(3): 442-456. [14] Qiu Zhongfeng, He Yijun, Lü Xianqing. Tidal adjoint assimilation with the TOPEX/Poseidon altimetry data in the Huanghai and Bohai seas. Acta Oceanologica Sinica, 2005, 27(4): 10-18. [丘仲锋, 何宜军, 吕咸青. 黄海、渤海 TOPEX/Poseidon高度计资料潮汐伴随同化. 海洋学报, 2005, 27(4): 10-18.] [15] Fang Guohong, Zheng Wenzhen, Chen Zhongyong et al. Analysis and Forecasting of Tides. Beijing: China Ocean Press, 1986. [方国红, 郑文振, 陈宗镛等. 潮汐和潮流的分析和预报. 北京: 海洋出版社, 1986.] [16] Thieler E R, Himmelstoss E A et al. Digital Shoreline Analysis System (DSAS) version 4.0: An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. *current version 4.2. 2009. [17] Zhao Bin, Guo Haiqiang, Yan Yaner et al. A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta. Estuarine, Coastal and Shelf Science, 2008, 77(1): 134-142. [18] Chen L C, Rau J Y. Detection of shoreline changes for tideland areas using multi-temporal satellite images. International Journal of Remote Sensing, 1998, 19(7): 3383-3397. [19] Lohani B, Mason D C. Construction of a digital elevation model of the Holderness coast using the waterline method and airborne thematic mapper data. International Journal of Remote Sensing, 1999, 20(3): 593-607. [20] Feng Aiping, Xia Dongxing, Gu Dongqi et al. Study on process and cause of the coastal erosion along the south coast of the Laizhou Bay. Advances in Marine Science, 2006, 24(1): 83-90. [丰爱平, 夏东兴, 谷东起等. 莱州湾南岸海岸侵蚀过程与原因研究. 海洋科学进展, 2006, 24(1): 83-90.] [21] Chen Bing'an. Dynamic analysis of sediment in Xiaoqing river estuary and the adjacent regions. Marine Science Bulletin, 1982, (5): 57-70. [陈炳安. 小清河河口近海区泥沙动态分析. 海洋通报, 1982, (5): 57-70.] [22] Fan Hui. Sediment transport in the Huanghe River mouth and the recent deltaic evolution [D]. Qingdao: Institute of Oceanology, Chinese academy of Sciences, 2005. [樊辉. 黄河口泥沙输移及三角洲的近期演变[D]. 青岛: 中国科学院海洋研究所, 2005.] [23] Huang Haijun, Fan Hui. Monitoring changes of nearshore zones in the Huanghe (Yellow River) delta since 1976. Oceanologia et Limnologia Sinica, 2004, 35(4): 306-315. [黄海军, 樊辉. 1976 年黄河改道以来三角洲近岸区变化遥感监测. 海洋与湖沼, 2004, 35(4): 306-314.] [24] Hu Chun Hong, Ji Zuwen, Wang Tao. Characteristics of ocean dynamics and sediment diffusion in the Yellow River estuary. Journal Sediment Research, 1996, (4): 1-10. [胡春宏, 吉祖稳, 王涛. 黄河口海洋动力特性与泥沙的输移扩散. 泥沙研究, 1996, (4): 1-10.] [25] Wang Tao, Yin Baocai, Li Ping et al. Impact on sea power of erosion and deposition in the Yellow River Delta and storm surges on the role of sand bar [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 1995. [王涛, 尹宝材, 李平等. 黄河三角洲近海冲淤变化对海动力条件的影响及风暴潮对拦门沙的作用[D]. 青岛: 中科院海洋研究所, 1995.] [26] Sun Xiaogong, Yang Zuosheng, Chen Zhangrong. Estimate and Character of accretion and erosion in modern Huanghe River. Acta Oceanologica Sinica, 1993, 15(1): 129-136. [孙效功, 杨作升, 陈彰榕. 现行黄河口海域泥沙冲淤的定量计算及其规律探讨. 海洋学报, 1993, 15(1): 129-136.] [27] Li Guangxue, Wei Helong, Yue Shuhong et al. Sedimentation in the Yellow River delta (Part II): Suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 1998, 149: 113-131. [28] Chen Xiaoying, Chen Shenliang, Yu Hongjun et al. Coastal profile types and evolution regularities of the Yellow River Delta. Advances in Marine Science, 2005, 23(4): 438-445. [陈小英, 陈沈良, 于洪军等. 黄河三角洲海岸剖面类型与演变规律. 海洋科学进展, 2005, 23(4): 438-445.] [29] Fan Hui, Huang Haijun. Changes in Huanghe (Yellow) River estuary since artificial re-routing in 1996. Chinese Journal of Oceanology and Limnology, 2005, 23(3): 299-305. [30] Jiang Wensheng, Wang Houjie. Distribution of suspended matter and its relationship with sediment particle size in Laizhou Bay. Oceanologia et Limnologia Sinica, 2005, 36(2): 97-103. [江文胜, 王厚杰. 莱州湾悬浮泥沙分布形态及其与底质分布的关系. 海洋与湖沼, 2005, 36(2): 97-103.] |
[1] | 徐晨晨, 叶虎平, 岳焕印, 谭翔, 廖小罕. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5): 917-930. |
[2] | 王晓茹, 唐志光, 王建, 王欣, 魏俊锋. 基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测[J]. 地理学报, 2020, 75(3): 470-484. |
[3] | 姚永慧, 张俊瑶, 索南东主. 南北过渡带1∶5万植被类型图遥感制图案例研究[J]. 地理学报, 2020, 75(3): 620-630. |
[4] | 周成虎, 孙九林, 苏奋振, 杨晓梅, 裴韬, 葛咏, 杨雅萍, 张岸, 廖小罕, 陆锋, 高星, 付东杰. 地理信息科学发展与技术应用[J]. 地理学报, 2020, 75(12): 2593-2609. |
[5] | 余姝辰, 王伦澈, 夏卫平, 余德清, 李长安, 贺秋华. 清末以来洞庭湖区通江湖泊的时空演变[J]. 地理学报, 2020, 75(11): 2346-2361. |
[6] | 赵贵宁, 张正勇, 刘琳, 徐丽萍, 王璞玉, 李丽, 宁珊. 基于多源遥感数据的玛纳斯河流域冰川物质平衡变化[J]. 地理学报, 2020, 75(1): 98-112. |
[7] | 刘文超, 刘纪远, 匡文慧. 陕北地区退耕还林还草工程土壤保护效应的时空特征[J]. 地理学报, 2019, 74(9): 1835-1852. |
[8] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |
[9] | 杨成德, 王欣, 魏俊峰, 刘琼欢, 鲁安新, 张勇, 唐志光. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556. |
[10] | 何磊,叶思源,袁红明,薛春汀. 黄河三角洲利津超级叶瓣时空范围的再认识[J]. 地理学报, 2019, 74(1): 146-161. |
[11] | 范科科,张强,史培军,孙鹏,余慧倩. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018, 73(9): 1778-1791. |
[12] | 陈玮彤,张东,崔丹丹,吕林,谢伟军,施顺杰,侯泽宇. 基于遥感的江苏省大陆岸线岸滩时空演变[J]. 地理学报, 2018, 73(7): 1365-1380. |
[13] | 刘纪远,宁佳,匡文慧,徐新良,张树文,颜长珍,李仁东,吴世新,胡云锋,杜国明,迟文峰,潘涛,宁静. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5): 789-802. |
[14] | 吴炳方, 张淼. 从遥感观测数据到数据产品[J]. 地理学报, 2017, 72(11): 2093-2111. |
[15] | 丁建丽, 王飞. 干旱区大尺度土壤盐度信息环境建模——以新疆天山南北中低海拔冲积平原为例[J]. 地理学报, 2017, 72(1): 64-78. |