地理学报 ›› 2011, Vol. 66 ›› Issue (11): 1540-1550.doi: 10.11821/xb201111010
陈艺鑫1, 张梅1, 李川川1, 李英奎2, 刘耕年1
收稿日期:
2011-06-20
修回日期:
2011-08-31
出版日期:
2011-11-20
发布日期:
2011-11-20
通讯作者:
刘耕年(1962-), 男, 山西定襄人, 教授, 博士生导师, 中国地理学会会员(S110004320M), 主要从事地貌学与第四纪地质学研究。E-mail: liugn@pku.edu.cn
作者简介:
陈艺鑫(1982-), 男, 辽宁辽阳人, 博士生, 主要从事地貌学与第四纪地质学研究。E-mail: chenyixin@pku.edu.cn
基金资助:
国家自然科学基金项目(40571014; 40971002); 国家重点基础研究发展规划项目(973 项目) (2005CB422001)资助
CHEN Yixin1, ZHANG Mei1, LI Chuanchuan1, LI Yingkui2, LIU Gengnian1
Received:
2011-06-20
Revised:
2011-08-31
Online:
2011-11-20
Published:
2011-11-20
Supported by:
National Natural Science Foundation of China, No.40571014; No.40971002; National BasicResearch Program of China (973 Program), No.2005CB422001
摘要: 格尔木河河谷中发育有四级河流阶地,均形成于末次冰盛期之后。阶地的形成由构造抬升驱动,四级阶地代表的河流下切过程反映了四次阶段性构造抬升。以三岔河和纳赤台为代表的中游河段,四次河流阶段性下切速率分别为16~13 ka BP (T4-T3),3.33~9.33 mm/a;13~11 ka BP (T3-T2),5.5~12 mm/a;11~5 ka BP (T2-T1),0.33~1 mm/a;5 ka BP (T1 至今),0.6~0.8 mm/a,下切速率自T4 至T1 先增快后减慢。上游小南川河段5 ka BP以来的平均下切速率为4 mm/a,显著大于三岔河和纳赤台河段,同期河流溯源侵蚀速率也较快,表明小南川局部地区全新世中期抬升强烈,应为西大滩断裂强烈活动所致。受区域性构造活动差异影响,格尔木河河流阶地在局部地区出现变形,其中在三岔河和最老冲积扇扇顶存在两个下切幅度和速度高峰值,而纳赤台河段下切和缓。表明控制昆仑河和野牛沟发育的昆仑河—野牛沟断裂、山前的红石沟断裂自末次冰盛期以来持续活动。其中,昆仑河—野牛沟断裂16~13 ka BP活动速率较快,到13~11 ka BP达到最快,11 ka BP后减慢,与河流中下游整体构造活动趋势一致。
陈艺鑫, 张梅, 李川川, 李英奎, 刘耕年. 末次冰盛期后格尔木河下切的时空变化及其构造意义[J]. 地理学报, 2011, 66(11): 1540-1550.
CHEN Yixin, ZHANG Mei, LI Chuanchuan, LI Yingkui, LIU Gengnian. Fluvial Incision Process and Its Tectonic Implications of Golmud River since Last Glaciation Maximum[J]. Acta Geographica Sinica, 2011, 66(11): 1540-1550.
[1] Bridgland D R. River terrace systems in north-west Europe: An archive of environmental change, uplift and earlyhuman occupation. Quaternary Science Reviews, 2000, 19: 1293-1303.[2] Bridgland D, Westaway R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon.Geomorphology, 2008, 98: 285-315.[3] Vandenberghe J. Climate forcing of fluvial system development: An evolution of ideas. Quaternary Science Reviews,2003, 22: 2053-2060.[4] Yang Jingchun, Li Youli. Geomorphology. Beijing: Peking University Press, 2001. [杨景春, 李有利. 地貌学原理. 北京:北京大学出版社, 2001.][5] Li Jijun, Fang Xiaomin, Ma Haizhou et al. Geomorphological and environmental evolution in the upper reaches of theYellow River during the late Cenozoic. Science in China: Series D, 1996, 26(4): 316-322. [李吉均, 方小敏, 马海洲等.晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学: D辑, 1996, 26(4): 316-322.][6] Yang Jingchun, Tan Lihua, Li Youli et al. River terraces and neotectonic evolution at north margin of the QilianshanMountains. Quaternary Sciences, 1998, 18(3): 229-237. [杨景春, 谭利华, 李有利等. 祁连山北麓河流阶地与新构造演化. 第四纪研究, 1998, 18(3): 229-237.][7] Gu Zhaoyan, Xu Bing, Lv Yanwu et al. Tectonic geomorhologic evolution of Nujiang gorge: The primary results ofTCN dating on fluvial terraces. Quaternary Sciences, 2006, 26(2): 293-294. [顾兆炎, 许冰, 吕延武等. 怒江峡谷构造地貌的演化:阶地宇宙成因核素定年的初步结果. 第四纪研究, 2006, 26(2): 293-294.][8] Qiu Weili, Zhang Jiafu, Zhou Liping et al. Preliminary study of the terrace sequence of the Huanghe River in Hequarea, Shanxi, China. Quaternary Sciences, 2008, 28(4): 544-552. [邱维理, 张家富, 周力平等. 山西河曲黄河阶地序列初步研究. 第四纪研究, 2008, 28(4): 544-552.][9] Pan B, Su H, Hu Z et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:Evidence from a 1.24 Ma terrace record near Lanzhou, China. Quaternary Science Reviews, 2009, 28(27/28):3281-3290.[10] Seong Y B, Owen L A, Bishop M P et al. Rates of fluvial bedrock incision within an actively uplifting orogen:Central Karakoram Mountains, northern Pakistan. Geomorphology, 2008, 97: 274-286.[11] Owen L A, Finkel R C, Ma H et al. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin,northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation.Quaternary International, 2006, 154/155: 73-86.[12] Chen Yixin, Li Yingkui, Zhang Yue et al. Late Quaternary deposition and incision sequences of the Golmud River andtheir environmental implication. Quaternary Sciences, 2011, 31(2): 347-359. [陈艺鑫, 李英奎, 张跃等. 末次冰期以来格尔木河填充—切割及驱动机制初探. 第四纪研究, 2011, 31(2): 347-359.][13] Wu Y, Cui Z, Liu G et al. Quaternary geomorphological evolution of the Kunlun Pass area and uplift of theQinghai-Xizang (Tibet) Plateau. Geomorphology, 2001, 36: 203-216.[14] Cui Zhijiu, Wu Yongqiu, Liu Gengnian et al. On Kunlun-Yellow River tectonic movement. Science in China: SeriesD, 1998, 28(1): 53-59. [崔之久, 伍永秋, 刘耕年等. 关于“昆仑—黄河运动”. 中国科学: D辑, 1998, 28(1): 53-59.][15] Li Changan, Yin Hongfu, Yu Wenqing. Evolution of drainage systems and its developing trend in connection withtectonic uplift of eastern Kunlun Mountains. Chinese Science Bulletin, 1999, 44(2): 211-213. [李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势. 科学通报, 1999, 44(2): 211-213.][16] Wang An, Wang Guochan, Xiang Shuyuan. Characteristics of river terraces in north slope of Eastern Kunlun Mountains and their relationship with plateau uplift. Earth Science: Journal of China University of Geosciences, 2003,28(6): 675-679. [王岸, 王国灿, 向树元. 东昆仑山东段北坡河流阶地发育及其与构造隆升的关系. 地球科学: 中国地质大学学报, 2003, 28(6): 675-679.][17] Cao Kai, Wang Guocan, Wang An. The Analysis of the tectonics and the behavior of the longitudinal section ofKunlun River in East Kunlun. Earth Science: Journal of China University of Geosciences, 2007, 32(5): 713-721. [曹凯, 王国灿, 王岸. 东昆仑山昆仑河纵剖面形貌分析及构造涵义. 地球科学: 中国地质大学学报, 2007, 32(5):713-721.][18] Van der Woerd J, Tapponnier P, Ryerson F J et al. Uniform postglacial slip-rate along the central 600 km of theKunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology.Geophysical Journal International, 2002, 148: 356-388.[19] Wu Zhenhan, Hu Daogong, Wu Zhonghai et al. Pressure ridges and their ages of the Xidatan strike-slip fault in SouthKunlun Mts. Geological Review, 2006, 52(1): 15-24. [吴珍汉, 胡道功, 吴中海等. 东昆仑南部西大滩断裂的地震鼓包及形成时代. 地质论评, 2006, 52(1): 15-24.][20] Wang Duojie, Xu Xiaowei, Jia Yunhong et al. Preliminary study on paleoearthquakes and the characteristics along thesection of Dongdatan and Xidatan on Kusai Lake-Maqu Fault zone during Holocene period. Inland Earthquake, 1992, 6(2): 158-166. [王多杰, 徐小卫, 贾运鸿等. 库赛湖—玛曲断裂带东、西大滩段全新世活动特征及古地震的研究. 内陆地震, 1992, 6(2): 158-166.][21] Hu Daogong, Ye Peisheng, Wu Zhenhan et al. Research on Holocene paleoearthquakes on the Xidatan segment of theEast Kunlun fault zone in northern Tibet. Quaternary Sciences, 2006, 26(6): 1012-1020. [胡道功, 叶培盛, 吴珍汉等.东昆仑断裂带西大滩段全新世古地震研究. 第四纪研究, 2006, 26(6): 1012-1020.][22] Seismological Bureau of Qinghai Province, Institute of Crustal Dynamics Chinese Earthquake Administration. EasternKunlun Active Fault Zone. Beijing: Seismological Press, 1999. [青海省地震局, 中国地震局地壳应力研究所. 东昆仑活动断裂带. 北京: 地震出版社, 1999.][23] Fu B, Awata Y, Du J et al. Late Quaternary systematic stream offsets caused by repeated large seismic events alongthe Kunlun fault, northern Tibet. Geomorphology, 2005, 71: 278-292.[24] Kidd W S F, Molnar P. Quaternary and active faulting observed on the 1985 Academia Sinica-Royal SocietyGeotraverse of Tibet. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and PhysicalSciences, 1988, 327: 337-363.[25] Zhao Xitao, Zheng Mianping, Li Daoming. Dating of the Sanchahe Formation and development of Paleolake Kunlunin Golmud city, Qinghai Province. Quaternary Sciences, 2009, 29(1): 89-97. [赵希涛, 郑绵平, 李道明. 青海格尔木三岔河组年龄测定与昆仑古湖发育. 第四纪研究, 2009, 29(1): 89-97.][26] Wu Xihao, Qian Fang. The landform of the Golmud River drainage//The Editorial Committee on the Tibetan PlateauGeological Papers. Contributions to the Geology of the Tibetan Plateau 4: Quaternary Geology and Glaciology.Beijing: Geological Publishing House, 1982. 71-86. [吴锡浩, 钱方. 格尔木河水系河谷地貌//地质部青藏高原地质文集编委会. 青藏高原地质文集4: 第四纪地质·冰川. 北京: 地质出版社, 1982: 71-86.][27] Wang Shaoling, Bian Chunyu. The involutions and their palaeoclimatic significance in the Nachi Tai region along theQinghai-Xizhang Highway. Geographical Research, 1993, 12(1): 94-100. [王绍令, 边纯玉. 青藏公路纳赤台地区冻融褶皱及其古气候意义. 地理研究, 1993, 12(1): 94-100.][28] Wang A, Smith J A, Wang G et al. Late Quaternary river terrace sequences in the eastern Kunlun Range, northernTibet: A combined record of climatic change and surface uplift. Journal of Asian Earth Sciences, 2009, 34: 532-543.[29] Wang Xulong, Lu Yanchou, Li Xiaoni. Luminescence dating of fine-grained quartz in Chinese loess: SimplifiedMultiple Aliquot Regenerative-dose (MAR) protocol. Seismology and Geology, 2005, 27(4): 615-623. [王旭龙, 卢演俦, 李晓妮. 细颗粒石英光释光测年: 简单多片再生法. 地震地质, 2005, 27(4): 615-623.][30] Lu Y, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130,000 yr for the ChineseLoess Plateau. Quaternary Research, 2007, 67: 152-160.[31] Aitken M J. An Introduction to Optical Dating. Oxford: Oxford University Press, 1998.[32] Li Y, Liu G, Kong P et al. Cosmogenic nuclide constraints on glacial chronology in the source area of the UrumqiRiver, Tian Shan, China. Journal of Quaternary Science, 2011, 26(3): 297-304.[33] Kohl C P, Nishiizumi K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides.Geochimica et Cosmochimica Acta, 1992, 56: 3583-3587.[34] Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth andPlanetary Science Letters, 1991, 104(2-4): 424-439.[35] Stone J O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 2000, 105(B10):23753-23759.[36] Dunne J, Elmore D, Muzikar P. Scaling factors for the rates of production of cosmogenic nuclides for geometricshielding and attenuation at depth on sloped surfaces. Geomorphology, 1999, 27(1/2): 3-11.[37] Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews,2001, 20: 1475-1560.[38] Ohno M, Hamano Y. Global analysis of the geomagnetic field: time variation of the dipole moment and thegeomagnetic pole in the Holocene. Journal of Geomagnetism and Geoelectricity, 1993, 45(11/12): 1455-1466.[39] Guyodo Y, Valet J. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 1999,399: 249-252.[40] Li Y, Li D. Basin wide erosion rates in the central and northern Tibetan Plateau estimated using in-situ produced 10Beconcentrations from river sediments. Association of American Geographers, Seattle, WA, 2011. |
[1] | 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江巧家—蒙姑段的阶地发育与河谷地貌演化[J]. 地理学报, 2020, 75(5): 1095-1105. |
[2] | 胡春生,刘邵晨,胡晨琦,曹乐,周迎秋. 黄山北麓青弋江发育研究[J]. 地理学报, 2018, 73(1): 138-151. |
[3] | 王乃瑞, 韩志勇, 李徐生, 陈刚, 王先彦, 鹿化煜. 河流纵剖面陡峭指数对庐山构造抬升的指示[J]. 地理学报, 2015, 70(9): 1516-1525. |
[4] | 庞奖励, 黄春长, 周亚利, 查小春, 张玉柱, 王蕾彬. 郧县盆地风成黄土—古土壤与汉江I级阶地形成年龄研究[J]. 地理学报, 2015, 70(1): 63-72. |
[5] | 张威, 刘蓓蓓, 李永化, 冯俊, 张兵, 王志麟, 李大鹏. 云南千湖山第四纪冰川发育特点与环境变化[J]. 地理学报, 2012, 67(5): 657-670. |
[6] | 吕红华,李有利,南峰,司苏沛,刘运明,钱蟒,赵洪壮. 天山北麓河流阶地序列及形成年代[J]. 地理学报, 2008, 63(1): 65-74. |
[7] | 马保起, 李克, 吴卫民, 聂宗笙, 杨发, 郭文生, 何福利. 大青山河谷地貌特征及新构造意义[J]. 地理学报, 1999, 54(4): 327-334. |
[8] | 侯建军, 韩慕康, 张保增, 柴宝龙, 韩恒悦. 秦岭北麓断裂带晚第四纪活动的地貌表现[J]. 地理学报, 1995, 50(2): 138-146. |
[9] | 刘国海, 韩慕康, 傅命佐, 李培英 . 大连半岛地貌、新构造运动与市区安全性 [J]. 地理学报, 1993, 48(3): 227-234. |
[10] | 朱照宇. 黄河中游河流阶地的形成与水系演化[J]. 地理学报, 1989, 44(4): 429-440. |
[11] | 蒋忠信. 秦皇岛滨海区地貌的相关分析[J]. 地理学报, 1981, 36(1): 108-115. |