地理学报 ›› 2011, Vol. 66 ›› Issue (11): 1466-1478.doi: 10.11821/xb201111003

• 气候变化 • 上一篇    下一篇

青藏高原夏季上空水汽含量演变特征及其与降水的关系

周顺武1, 吴萍1, 王传辉1,2, 韩军彩1,3   

  1. 1. 南京信息工程大学气象灾害省部共建教育部重点实验室, 南京 210044;
    2. 安徽省气象局, 合肥 230061;
    3. 河北省石家庄市气象局, 石家庄 050081
  • 收稿日期:2011-08-24 修回日期:2011-09-26 出版日期:2011-11-20 发布日期:2011-12-24
  • 作者简介:周顺武(1968-), 男, 四川人, 教授, 博士, 主要从事气候变化研究。E-mail: zhou@nuist.edu.cn
  • 基金资助:

    公益性行业(气象) 科研专项经费(GYHY200906014); 国家重点基础研究发展规划项目(2010CB428505); 中国气象局成都高原气象研究所开放实验室基金项目(LPM2011015)

Spatial Distribution of Atmospheric Water Vapor and Its Relationship with Precipitation in Summer over the Tibetan Plateau

ZHOU Shunwu1, WU Ping1, WANG Chuanhui1,2, HAN Juncai1,3   

  1. 1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;
    2. Anhui Provincial Meteorological Bureau; Hefei 230061, China;
    3. Shijiazhuang Meteorological Bureau of Hebei Province, Shijiazhuang 050081, China
  • Received:2011-08-24 Revised:2011-09-26 Online:2011-11-20 Published:2011-12-24
  • Supported by:

    R&D Special Fund forPublic Welfare Industry (Meteorology), No.GYHY200906014; The Major State Basic Research DevelopmentProgram of China, No.2010CB428505; Open Lab Foundation of Institute of Plateau Meteorology, CMA, No.LPM201105

摘要: 利用青藏高原(以下简称高原) 近30 年(1979-2008 年) 14 个探空站的温度和湿度观测资料以及83 个地面台站的月平均降水资料,分析了高原夏季上空水汽含量与地面降水的联系以及高原地区的降水转化率问题。结果表明:1) 高原夏季水汽含量在空间分布上表现出随海拔高度增高而减少的特征,其中东北部为最大值,东南部为次大值,而西北部为最小值。夏季降水整体上由东南向西北递减;2) EOF分解表明,高原夏季水汽含量存在两种主要的空间分布型:即全区一致变化型和南北反向变化型,其中以唐古拉山脉北侧为界呈现出的水汽含量南北反向型与降水的第一特征向量场表现出的南北反向型在空间分布上十分相似;3) 在年际变化上,高原夏季水汽含量的南北反向型与降水的南北反向型之间存在较一致的对应关系:即水汽含量出现南多北少时,高原南部降水普遍偏多而北部降水普遍偏少,反之亦然;4) 高原夏季平均降水转化率在3%~38%之间,其空间差异非常明显,高原南部降水转化率明显大于北部地区。

关键词: 青藏高原, 水汽含量, 降水, 降水转化率

Abstract: By using the observed temperature and humidity dataset of the 14 radiosonde stations and monthly mean precipitation data of 83 ground stations from 1979 to 2008 over the Tibetan Plateau (TP), the relationship between the atmospheric water vapor (WV) and precipitation in summer as well as the precipitation conversion efficiency (PEC) over the TP is analyzed. The statistic results are obtained as follows. (1) The summer WV decreases with increasing altitude, with the largest value area observed in the northeastern part of the TP and the second largest value area in the southeastern part of the TP, while the northwestern part is the lowest value area. The summer precipitation decreases from southeast to northwest. (2) The summer WV presents two main patterns based on the EOF analysis: the whole region consistent-type and the north-south opposite-type. The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of Tanggula Mountains. (3) The summer precipitation is more (less) in the southern (northern) TP in the years with the distribution of north lack of the summer WV while south abundant, and vice versa. (4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer, which is obviously bigger in the southern TP than that in the northern TP.

Key words: the Tibetan Plateau, water vapor content, precipitation, precipitation conversion efficiency