地理学报 ›› 2013, Vol. 68 ›› Issue (5): 593-601.doi: 10.11821/xb201305002
戴君虎1, 王焕炯1,2, 葛全胜1
收稿日期:
2012-12-15
修回日期:
2013-03-02
出版日期:
2013-05-20
发布日期:
2013-05-20
通讯作者:
葛全胜, 博士, 研究员, 中国地理学会会员(S110000942M), 主要从事全球变化研究。E-mail: geqs@igsnrr.ac.cn
作者简介:
戴君虎, 博士, 副研究员, 中国地理学会会员(S110001648m), 主要从事植物生态和物候学研究。E-mail: daijh@igsnrr.ac.cn
基金资助:
国家自然科学基金项目(41030101;41171043);国家重点基础研究发展计划项目(2012CB955304);中国科学院战略性先导科技专项(XDA05090301)
DAI Junhu1, WANG Huanjiong1,2, GE Quansheng1
Received:
2012-12-15
Revised:
2013-03-02
Online:
2013-05-20
Published:
2013-05-20
Supported by:
National Natural Science Foundation of China, No.41030101; No.41171043; National Basic Research Program of China, No.2012CB955304, Strategic Priority Research Program of the Chinese Academy of Sciences, No.XDA05090301
摘要: 中国温带季风区是我国重要的农业区,春季霜冻常对该地区的植物造成严重的损害。本文利用“中国物候观测网”12 个站点的物候观测数据和对应站点气象资料,应用物候模型方法,对1963-2009 年各站点的霜冻频次和多种木本植物的始花期进行了分析,并对植物在花期的霜冻风险进行了评估。结果表明,1963-2009 年,研究区内东北地区和华北地区的始花期分别以-1.52 天/10a (P < 0.01) 和-2.22 天/10a (P < 0.01) 的速度提前。在同一时段,研究区春季霜冻日数显著减少,终霜冻日显著提前。综合考虑花期和霜冻频次的变化,霜冻风险指数,即木本植物花期受到霜冻的物种数占调查总数的百分比,在东北地区以-0.37%/10a 的速度降低(不显著);而在华北地区,霜冻风险指数则以-1.80%/10a 的速度显著下降(P < 0.01)。这表明过去半个世纪研究区植物花期霜冻风险在降低,且存在显著的区域差异。该结论可为农业和森林管理者制订应对春季霜冻害的决策提供参考。
戴君虎, 王焕炯, 葛全胜. 近50年中国温带季风区植物花期春季霜冻风险变化[J]. 地理学报, 2013, 68(5): 593-601.
DAI Junhu, WANG Huanjiong, GE Quansheng. Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years[J]. Acta Geographica Sinica, 2013, 68(5): 593-601.
[1] Zwiers F, Hegerl G. Climate change: Attributing cause and effect. Nature, 2008, 453(7193): 296-297.[2] Root T L, Price J T, Hall K R et al. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421 (6918): 57-60.[3] Chuine I. Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1555): 3149-3160.[4] Loustau D, Bosc A, Colin A et al. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiology, 2005, 25(7): 813-820.[5] Fitter A H, Fitter R. Rapid changes in flowering time in British plants. Science, 2002, 296(5573): 1689-1691.[6] Devaux C, Lande R. Selection on variance in flowering time within and among individuals. Evolution, 2010, 64(5): 1311-1320.[7] Undro. Mitigating natural disasters : Phenomena, effects and options : A manual for policy makers and planners. New York: United Nations Publication, 1991: 1-164.[8] Alexander D E. Confronting Catastrophe: New Perspectives Natural Disasters. Oxford: Oxford University Press, 2000: 1-282.[9] Xiao Jinxiang, Mu Biao, Hu Fei. Agricultural Meteorology. Beijing: Higher Education Press, 2009: 143-149.[肖金香, 穆彪, 胡飞. 农业气象学. 北京: 高等教育出版社, 2009: 143-149.][10] Augspurger C K. Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology, 2009, 23(6): 1031-1039.[11] Eccel E, Rea R, Caffarra A et al. Risk of spring frost to apple production under future climate scenarios: The role of phenological acclimation. International Journal of Biometeorology, 2009, 53(3): 273-286.[12] Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421(6918): 37-42.[13] Walther G R. Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics, 2003, 6(3): 169-185.[14] Wang H, Dai J, Ge Q. The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007. Science China Earth Sciences, 2012, 55(6): 991-1000.[15] Ma Zhuguo. The climatic variability and influence of first frost dates in northern China. Acta Geographica Sinica, 2003, 58(Suppl.): 31-37.[马柱国. 中国北方地区霜冻日的变化与区域增暖相互关系. 地理学报, 2003, 58(增刊): 31-37.][16] Tao F, Zhang S, Zhang Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic causes. Regional Environmental Change, 2012, 1(1): 1-17.[17] Chen Qianjin, Zhang Yongshan. Study on climatic features of unusual first and last frost in North China. Journal of Natural Disasters, 1995, 4(3): 33-39.[陈乾金, 张永山. 华北异常初终霜冻气候特征的研究. 自然灾害学报, 1995, 4 (3): 33-39.][18] Ding Yihui, Ren Guoyu, Shi Guangyu et al. National assessment report of climate change (I): Climate change in China and its future trend. Advances in Climate Change Research, 2006, 2(1): 3-8.[丁一汇, 任国玉, 石广玉等. 气候 变化国家评估报告(I): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1): 3-8.][19] Wan Minwei, Liu Xiuzhen. China's National Phenological Observational Criterion. Beijing: Science Press, 1979.[宛敏 渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979.][20] Wang Xiuping, Ren Guoyu, Zhao Chunyu et al. Characteristics of first/last frost date events and frost-free period in Dalian area during recent 46 years. Journal of Applied Meteorological Science, 2008, 19(6): 673-678.[王秀萍, 任国 玉, 赵春雨等. 近46 年大连地区初、终霜冻事件和无霜冻期变化. 应用气象学报, 2008, 19(6): 673-678.][21] Snyder R L, de Melo-Abreu J P, Matulich S et al. Frost protection: fundamentals, practice and economics, Vol. 1. Rome: Environment and Natural Resources Service (SDRN) Publications, 2005.[22] Cleland E E, Chuine I, Menzel A et al. Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 2007, 22(7): 357-365.[23] Hänninen H. Climate warming and the risk of frost damage to boreal forest trees: Identification of critical ecophysiological traits. Tree Physiology, 2006, 26(7): 889-898.[24] Bennie J, Kubin E, Wiltshire A et al. Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: The implications of local adaptation to climate. Global Change Biology, 2010, 16(5): 1503-1514.[25] Farajzadeh M, Rahimi M, Kamali G A et al. Modelling apple tree bud burst time and frost risk in Iran. Meteorological Applications, 2010, 17(1): 45-52.[26] Hunter A F, Lechowicz M J. Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 1992, 29 (3): 597-604.[27] Cannell M G R, Smith R I. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 1983, 20(1): 951-963.[28] Linkosalo T, Carter T R, Häkkinen R et al. Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: A comparison of two models. Tree Physiology, 2000, 20(17): 1175-1182.[29] Jönsson A M, Linderson M L, Stjernquist I et al. Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Global and Planetary Change, 2004, 44(1): 195-207.[30] Linkosalo T, Häkkinen R, Hänninen H. Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 2006, 26(9): 1165-1172.[31] Linkosalo T, Lappalainen H K, Hari P. A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiology, 2008, 28(12): 1873-1882. |
[1] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[2] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[3] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[4] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[5] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[6] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[7] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[8] | 萧凌波, 闫军辉. 基于地方志的1736-1911年华北秋粮丰歉指数序列重建及其与气候变化的关系[J]. 地理学报, 2019, 74(9): 1777-1788. |
[9] | 李双双, 延军平, 武亚群, 汪成博. 秦岭—淮河南北供暖格局变化及其影响因素[J]. 地理学报, 2019, 74(9): 1866-1877. |
[10] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[11] | 刘娟,姚晓军,刘时银,郭万钦,许君利. 1970-2016年冈底斯山冰川变化[J]. 地理学报, 2019, 74(7): 1333-1344. |
[12] | 刘俊,黄莉,孙晓倩,李宁馨,张恒锦. 气候变化对中国观鸟旅游的影响——基于鸟类物候变化的分析[J]. 地理学报, 2019, 74(5): 912-922. |
[13] | 马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874. |
[14] | 卓莉, 张子彦, 雷小雨, 李秋萍, 陶海燕. 基于蒙特卡洛生存分析探究东北森林物候的影响因素[J]. 地理学报, 2019, 74(3): 490-503. |
[15] | 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543. |